
Learning Objectives 

A student will be able to: 

• Compute by hand the integrals of a wide variety of functions by using the technique of 

Improper Integration. 

• Combine this technique with other integration techniques to integrate. 

• Distinguish between proper and improper integrals. 

The concept of improper integrals is an extension to the concept of definite integrals. 
The reason for the term improper is because those integrals either 

• include integration over infinite limits or 

• the integrand may become infinite within the limits of integration. 

We will take each case separately. Recall that in the definition of definite 

integral ∫baf(x)dx we assume that the interval of integration [a,b] is finite and the 

function f is continuous on this interval. 

Integration Over Infinite Limits 

If the integrand f is continuous over the interval [a,∞), then the improper integral in this 

case is defined as 

∫∞af(x)dx=liml→∞∫laf(x)dx. 
If the integration of the improper integral exists, then we say that it converges. But if the 
limit of integration fails to exist, then the improper integral is said to diverge. The 
integral above has an important geometric interpretation that you need to keep in mind. 

Recall that, geometrically, the definite integral ∫baf(x)dx represents the area under the 

curve. Similarly, the integral ∫laf(x)dx is a definite integral that represents the area 

under the curve f(x) over the interval [a,l], as the figure below shows. However, 

as l approaches ∞, this area will expand to the area under the curve of f(x) and over 

the entire interval [a,∞). Therefore, the improper integral ∫∞af(x)dx can be thought of 

as the area under the function f(x) over the interval [a,∞). 

 

Example 1: 



Evaluate ∫∞1dxx . 

Solution: 

We notice immediately that the integral is an improper integral because the upper limit 
of integration approaches infinity. First, replace the infinite upper limit by the finite 

limit l and take the limit of l to approach infinity: 

∫∞1dxx=liml→∞∫l1dxx=liml→∞[lnx]l1=liml→∞(lnl−ln1)=liml→∞lnl=∞. 
Thus the integral diverges. 

Example 2: 

Evaluate ∫∞2dxx2 . 
Solution: 

∫∞2dxx2=liml→∞∫l2dxx2=liml→∞[−1x]l2=liml→∞(−1l+12)=12. 
Thus the integration converges to 12. 
Example 3: 

Evaluate ∫−∞+∞dx1+x2. 
Solution: 

What we need to do first is to split the integral into two intervals (−∞,0]and [0,+∞). So 

the integral becomes 

∫+∞−∞dx1+x2=∫0−∞dx1+x2+∫+∞0dx1+x2. 
Next, evaluate each improper integral separately. Evaluating the first integral on the 
right, 

∫0−∞dx1+x2=liml→−∞∫0ldx1+x2=liml→−∞[tan−1x]0l=liml→−∞[tan−10−tan−1l]=liml→−∞[
0−(−π2)]=π2. 
Evaluating the second integral on the right, 

∫∞0dx1+x2=liml→∞∫l0dx1+x2=liml→∞[tan−1x]l0=π2−0=π2. 
Adding the two results, 

∫+∞−∞dx1+x2=π2+π2=π. 
Remark: In the previous example, we split the integral at x=0.However, we could have 

split the integral at any value of x=c without affecting the convergence or divergence of 

the integral. The choice is completely arbitrary. This is a famous theorem that we will 
not prove here. That is, 

∫+∞−∞f(x)dx=∫c−∞f(x)dx+∫+∞cf(x)dx. 

Integrands with Infinite Discontinuities 



This is another type of integral that arises when the integrand has a vertical asymptote 
(an infinite discontinuity) at the limit of integration or at some point in the interval of 
integration. Recall from Chapter 5 in the Lesson on Definite Integrals that in order for 

the function f to be integrable, it must be bounded on the interval [a,b]. Otherwise, the 

function is not integrable and thus does not exist. For example, the integral 

∫40dxx−1 

develops an infinite discontinuity at x=1 because the integrand approaches infinity at 

this point. However, it is continuous on the two intervals [0,1) and (1,4]. Looking at the 

integral more carefully, we may split the interval [0,4]→[0,1)∪(1,4] and integrate 

between those two intervals to see if the integral converges. 

∫40dxx−1=∫10dxx−1+∫41dxx−1. 
We next evaluate each improper integral. Integrating the first integral on the right hand 
side, 

∫10dxx−1=liml→1−∫l0dxx−1=liml→1−[ln|x−1|]l0=liml→1−[ln|l−1|−ln|−1|]=−∞. 
The integral diverges because ln(0) is undefined, and thus there is no reason to 

evaluate the second integral. We conclude that the original integral diverges and has no 
finite value. 
Example 4: 

Evaluate ∫31dxx−1−−−−−√ . 

Solution: 

∫31dxx−1−−−−−√=liml→1+∫3ldxx−1−−−−−√=liml→1+[2x−1−−−−−√]3l=liml→1+[22–
√−2l−1−−−−√]=22–√. 
So the integral converges to 22–√. 

Example 5: 

In Chapter 5 you learned to find the volume of a solid by revolving a curve. Let the curve 

be y=xe−x,0≤x≤∞ and revolving about the x−axis. What is the volume of revolution? 

Solution: 

 



From the figure above, the area of the region to be revolved is given 

by A=πy2=πx2e−2x. Thus the volume of the solid is 

V=π∫∞0x2e−2xdx=πliml→∞∫l0x2e−2xdx. 
As you can see, we need to integrate by parts twice: 

∫x2e−2xdx=−x22e−2x+∫xe−2xdx=−x22e−2x−x2e−2x−14e−2x+C. 
Thus 

V=πliml→∞[−x22e−2x−x2e−2x−14e−2x]l0=πliml→∞[2x2+2x+1−4e2x]l0=πliml→∞[2l2+2l
+1−4e2l−1−4e0]=πliml→∞[2l2+2l+14e2l+14]. 
At this stage, we take the limit as l approaches infinity. Notice that the when you 

substitute infinity into the function, the denominator of the 

expression 2l2+2l+1−4e2l, being an exponential function, will approach infinity at a 

much faster rate than will the numerator. Thus this expression will approach zero at 
infinity. Hence 

V=π[0+14]=π4, 
So the volume of the solid is π/4. 
Example 6: 

Evaluate ∫+∞−∞dxex+e−x. 
Solution: 

This can be a tough integral! To simplify, rewrite the integrand as 

1ex+e−x=1e−x(e2x+1)=exe2x+1=ex1+(ex)2. 
Substitute into the integral: 

∫dxex+e−x=∫ex1+(ex)2dx. 
Using u−substitution, let u=ex,du=exdx. 
∫dxex+e−x=∫du1+u2=tan−1u+C=tan−1ex+C. 
Returning to our integral with infinite limits, we split it into two regions. Choose as the 

split point the convenient x=0. 
∫+∞−∞dxex+e−x=∫0−∞dxex+e−x+∫+∞0dxex+e−x. 
Taking each integral separately, 

∫0−∞dxex+e−x=liml→−∞∫0ldxex+e−x=liml→−∞[tan−1ex]0l=liml→−∞[tan−1e0−tan−1el]=π4
−0=π4. 
Similarly, 

∫+∞0dxex+e−x=liml→∞∫10dxex+e−x=liml→∞[tan−1ex]l0=liml→∞[tan−1el−tan−11]=π2−π
4=π4. 
Thus the integral converges to 



∫+∞−∞dxex+e−x=π4+π4=π2. 
 

For a video presentation of Improper Integrals with Infinity in the Upper and Lower 
Limits (22.0), see Improper Integrals, www.justmathtutoring.com (7:55). 

Review Questions 

1. Determine whether the following integrals are improper. If so, explain why. 

a. ∫71x+2x−3dx 

b. ∫71x+2x+3dx 

c. ∫10lnxdx 

d. ∫∞01x−2−−−−−√dx 

e. ∫π/40tanxdx 

Evaluate the integral or state that it diverges. 

2. ∫∞11x2.001dx 

3. ∫−2−∞[1x−1−1x+1]dx 

4. ∫0−∞e5xdx 

5. ∫531(x−3)4dx 

6. ∫π/2−π/2tanxdx 

7. ∫1011−x2−−−−−√dx 

8. The region between the x−axis and the curve y=e−x for x≥0 is revolved about the x−axis. 

a. Find the volume of revolution, V. 
b. Find the surface area of the volume generated, S. 

 

http://www.youtube.com/watch?v=f6cGotvktxs

