
Chapter	2
Hide	contents

2.1	Introduction

2.1.1	Native	Data	Types

2.2	Data	Abstraction

2.2.1	Example:	Rational
Numbers
2.2.2	Pairs
2.2.3	Abstraction	Barriers
2.2.4	The	Properties	of	Data

2.3	Sequences

2.3.1	Lists
2.3.2	Sequence	Iteration
2.3.3	Sequence	Processing
2.3.4	Sequence	Abstraction
2.3.5	Strings
2.3.6	Trees
2.3.7	Linked	Lists

2.4	Mutable	Data

2.4.1	The	Object	Metaphor
2.4.2	Sequence	Objects
2.4.3	Dictionaries
2.4.4	Local	State
2.4.5	The	Benefits	of	Non-
Local	Assignment
2.4.6	The	Cost	of	Non-Local
Assignment
2.4.7	Implementing	Lists	and
Dictionaries
2.4.8	Dispatch	Dictionaries
2.4.9	Propagating	Constraints

2.5	Object-Oriented
Programming

2.5.1	Objects	and	Classes
2.5.2	Defining	Classes
2.5.3	Message	Passing	and
Dot	Expressions
2.5.4	Class	Attributes
2.5.5	Inheritance
2.5.6	Using	Inheritance
2.5.7	Multiple	Inheritance
2.5.8	The	Role	of	Objects

2.6	Implementing	Classes
and	Objects

2.6.1	Instances
2.6.2	Classes
2.6.3	Using	Implemented
Objects

2.5			Object-Oriented	Programming

Object-oriented	programming	(OOP)	is	a	method	for	organizing	programs	that	brings
together	many	of	the	ideas	introduced	in	this	chapter.	Like	the	functions	in	data
abstraction,	classes	create	abstraction	barriers	between	the	use	and	implementation	of
data.	Like	dispatch	dictionaries,	objects	respond	to	behavioral	requests.	Like	mutable
data	structures,	objects	have	local	state	that	is	not	directly	accessible	from	the	global
environment.	The	Python	object	system	provides	convenient	syntax	to	promote	the	use
of	these	techniques	for	organizing	programs.	Much	of	this	syntax	is	shared	among	other
object-oriented	programming	languages.
The	object	system	offers	more	than	just	convenience.	It	enables	a	new	metaphor	for
designing	programs	in	which	several	independent	agents	interact	within	the	computer.
Each	object	bundles	together	local	state	and	behavior	in	a	way	that	abstracts	the
complexity	of	both.	Objects	communicate	with	each	other,	and	useful	results	are
computed	as	a	consequence	of	their	interaction.	Not	only	do	objects	pass	messages,
they	also	share	behavior	among	other	objects	of	the	same	type	and	inherit
characteristics	from	related	types.
The	paradigm	of	object-oriented	programming	has	its	own	vocabulary	that	supports	the
object	metaphor.	We	have	seen	that	an	object	is	a	data	value	that	has	methods	and
attributes,	accessible	via	dot	notation.	Every	object	also	has	a	type,	called	its	class.	To
create	new	types	of	data,	we	implement	new	classes.

2.5.1			Objects	and	Classes

A	class	serves	as	a	template	for	all	objects	whose	type	is	that	class.	Every	object	is	an
instance	of	some	particular	class.	The	objects	we	have	used	so	far	all	have	built-in
classes,	but	new	user-defined	classes	can	be	created	as	well.	A	class	definition	specifies
the	attributes	and	methods	shared	among	objects	of	that	class.	We	will	introduce	the
class	statement	by	revisiting	the	example	of	a	bank	account.
When	introducing	local	state,	we	saw	that	bank	accounts	are	naturally	modeled	as
mutable	values	that	have	a	balance.	A	bank	account	object	should	have	a	withdraw
method	that	updates	the	account	balance	and	returns	the	requested	amount,	if	it	is
available.	To	complete	the	abstraction:	a	bank	account	should	be	able	to	return	its
current	balance,	return	the	name	of	the	account	holder,	and	an	amount	for	deposit.
An	Account	class	allows	us	to	create	multiple	instances	of	bank	accounts.	The	act	of
creating	a	new	object	instance	is	known	as	instantiating	the	class.	The	syntax	in	Python
for	instantiating	a	class	is	identical	to	the	syntax	of	calling	a	function.	In	this	case,	we	call
Account	with	the	argument	'Kirk',	the	account	holder's	name.

>>>	a	=	Account('Kirk')

An	attribute	of	an	object	is	a	name-value	pair	associated	with	the	object,	which	is
accessible	via	dot	notation.	The	attributes	specific	to	a	particular	object,	as	opposed	to
all	objects	of	a	class,	are	called	instance	attributes.	Each	Account	has	its	own	balance	and
account	holder	name,	which	are	examples	of	instance	attributes.	In	the	broader
programming	community,	instance	attributes	may	also	be	called	fields,	properties,	or
instance	variables.

>>>	a.holder
'Kirk'
>>>	a.balance
0

Functions	that	operate	on	the	object	or	perform	object-specific	computations	are	called
methods.	The	return	values	and	side	effects	of	a	method	can	depend	upon	and	change
other	attributes	of	the	object.	For	example,	deposit	is	a	method	of	our	Account	object	a.	It
takes	one	argument,	the	amount	to	deposit,	changes	the	balance	attribute	of	the	object,
and	returns	the	resulting	balance.

>>>	a.deposit(15)
15

We	say	that	methods	are	invoked	on	a	particular	object.	As	a	result	of	invoking	the
withdraw	method,	either	the	withdrawal	is	approved	and	the	amount	is	deducted,	or	the

C⚬MP⚬SING	PR⚬GRAMS	 TEXT 	 PROJECTS 	 TUTOR 	 ABOUT

http://composingprograms.com/pages/25-object-oriented-programming.html Go OCT NOV DEC

12
2014 2015 2016

78	captures
	 	
	

� ⍰❎
f �

1	Oct	2013	-	30	Oct	2017 ▾	About	this	capture

2.7	Object	Abstraction

2.7.1	String	Conversion
2.7.2	Special	Methods
2.7.3	Multiple
Representations
2.7.4	Generic	Functions

2.8	Efficiency

2.8.1	Measuring	Efficiency
2.8.2	Memoization
2.8.3	Orders	of	Growth
2.8.4	Example:
Exponentiation
2.8.5	Growth	Categories

2.9	Recursive	Objects

2.9.1	Linked	List	Class
2.9.2	Tree	Class
2.9.3	Sets

request	is	declined	and	the	method	returns	an	error	message.

>>>	a.withdraw(10)		#	The	withdraw	method	returns	the	balance	after	withdrawal
5
>>>	a.balance							#	The	balance	attribute	has	changed
5
>>>	a.withdraw(10)
'Insufficient	funds'

As	illustrated	above,	the	behavior	of	a	method	can	depend	upon	the	changing	attributes
of	the	object.	Two	calls	to	withdraw	with	the	same	argument	return	different	results.

2.5.2			Defining	Classes

User-defined	classes	are	created	by	class	statements,	which	consist	of	a	single	clause.	A
class	statement	defines	the	class	name,	then	includes	a	suite	of	statements	to	define	the
attributes	of	the	class:
class	<name>:
				<suite>

When	a	class	statement	is	executed,	a	new	class	is	created	and	bound	to	<name>	in	the
first	frame	of	the	current	environment.	The	suite	is	then	executed.	Any	names	bound
within	the	<suite>	of	a	class	statement,	through	def	or	assignment	statements,	create	or
modify	attributes	of	the	class.
Classes	are	typically	organized	around	manipulating	instance	attributes,	which	are	the
name-value	pairs	associated	with	each	instance	of	that	class.	The	class	specifies	the
instance	attributes	of	its	objects	by	defining	a	method	for	initializing	new	objects.	For
example,	part	of	initializing	an	object	of	the	Account	class	is	to	assign	it	a	starting	balance
of	0.
The	<suite>	of	a	class	statement	contains	def	statements	that	define	new	methods	for
objects	of	that	class.	The	method	that	initializes	objects	has	a	special	name	in	Python,
__init__	(two	underscores	on	each	side	of	the	word	"init"),	and	is	called	the	constructor
for	the	class.

>>>	class	Account:
								def	__init__(self,	account_holder):
												self.balance	=	0
												self.holder	=	account_holder

The	__init__	method	for	Account	has	two	formal	parameters.	The	first	one,	self,	is	bound
to	the	newly	created	Account	object.	The	second	parameter,	account_holder,	is	bound	to
the	argument	passed	to	the	class	when	it	is	called	to	be	instantiated.
The	constructor	binds	the	instance	attribute	name	balance	to	0.	It	also	binds	the	attribute
name	holder	to	the	value	of	the	name	account_holder.	The	formal	parameter	account_holder
is	a	local	name	in	the	__init__	method.	On	the	other	hand,	the	name	holder	that	is	bound
via	the	final	assignment	statement	persists,	because	it	is	stored	as	an	attribute	of	self
using	dot	notation.
Having	defined	the	Account	class,	we	can	instantiate	it.

>>>	a	=	Account('Kirk')

This	"call"	to	the	Account	class	creates	a	new	object	that	is	an	instance	of	Account,	then
calls	the	constructor	function	__init__	with	two	arguments:	the	newly	created	object	and
the	string	'Kirk'.	By	convention,	we	use	the	parameter	name	self	for	the	first	argument
of	a	constructor,	because	it	is	bound	to	the	object	being	instantiated.	This	convention	is
adopted	in	virtually	all	Python	code.
Now,	we	can	access	the	object's	balance	and	holder	using	dot	notation.

>>>	a.balance
0
>>>	a.holder
'Kirk'

Identity.	Each	new	account	instance	has	its	own	balance	attribute,	the	value	of	which	is
independent	of	other	objects	of	the	same	class.

>>>	b	=	Account('Spock')
>>>	b.balance	=	200
>>>	[acc.balance	for	acc	in	(a,	b)]
[0,	200]

To	enforce	this	separation,	every	object	that	is	an	instance	of	a	user-defined	class	has	a

unique	identity.	Object	identity	is	compared	using	the	is	and	is	not	operators.

>>>	a	is	a
True
>>>	a	is	not	b
True

Despite	being	constructed	from	identical	calls,	the	objects	bound	to	a	and	b	are	not	the
same.	As	usual,	binding	an	object	to	a	new	name	using	assignment	does	not	create	a
new	object.

>>>	c	=	a
>>>	c	is	a
True

New	objects	that	have	user-defined	classes	are	only	created	when	a	class	(such	as
Account)	is	instantiated	with	call	expression	syntax.
Methods.	Object	methods	are	also	defined	by	a	def	statement	in	the	suite	of	a	class
statement.	Below,	deposit	and	withdraw	are	both	defined	as	methods	on	objects	of	the
Account	class.

>>>	class	Account:
								def	__init__(self,	account_holder):
												self.balance	=	0
												self.holder	=	account_holder
								def	deposit(self,	amount):
												self.balance	=	self.balance	+	amount
												return	self.balance
								def	withdraw(self,	amount):
												if	amount	>	self.balance:
																return	'Insufficient	funds'
												self.balance	=	self.balance	-	amount
												return	self.balance

While	method	definitions	do	not	differ	from	function	definitions	in	how	they	are	declared,
method	definitions	do	have	a	different	effect	when	executed.	The	function	value	that	is
created	by	a	def	statement	within	a	class	statement	is	bound	to	the	declared	name,	but
bound	locally	within	the	class	as	an	attribute.	That	value	is	invoked	as	a	method	using
dot	notation	from	an	instance	of	the	class.
Each	method	definition	again	includes	a	special	first	parameter	self,	which	is	bound	to
the	object	on	which	the	method	is	invoked.	For	example,	let	us	say	that	deposit	is	invoked
on	a	particular	Account	object	and	passed	a	single	argument	value:	the	amount	deposited.
The	object	itself	is	bound	to	self,	while	the	argument	is	bound	to	amount.	All	invoked
methods	have	access	to	the	object	via	the	self	parameter,	and	so	they	can	all	access
and	manipulate	the	object's	state.
To	invoke	these	methods,	we	again	use	dot	notation,	as	illustrated	below.

>>>	spock_account	=	Account('Spock')
>>>	spock_account.deposit(100)
100
>>>	spock_account.withdraw(90)
10
>>>	spock_account.withdraw(90)
'Insufficient	funds'
>>>	spock_account.holder
'Spock'

When	a	method	is	invoked	via	dot	notation,	the	object	itself	(bound	to	spock_account,	in
this	case)	plays	a	dual	role.	First,	it	determines	what	the	name	withdraw	means;	withdraw	is
not	a	name	in	the	environment,	but	instead	a	name	that	is	local	to	the	Account	class.
Second,	it	is	bound	to	the	first	parameter	self	when	the	withdraw	method	is	invoked.

2.5.3			Message	Passing	and	Dot	Expressions

Methods,	which	are	defined	in	classes,	and	instance	attributes,	which	are	typically
assigned	in	constructors,	are	the	fundamental	elements	of	object-oriented	programming.
These	two	concepts	replicate	much	of	the	behavior	of	a	dispatch	dictionary	in	a	message
passing	implementation	of	a	data	value.	Objects	take	messages	using	dot	notation,	but
instead	of	those	messages	being	arbitrary	string-valued	keys,	they	are	names	local	to	a
class.	Objects	also	have	named	local	state	values	(the	instance	attributes),	but	that	state
can	be	accessed	and	manipulated	using	dot	notation,	without	having	to	employ	nonlocal
statements	in	the	implementation.
The	central	idea	in	message	passing	was	that	data	values	should	have	behavior	by
responding	to	messages	that	are	relevant	to	the	abstract	type	they	represent.	Dot

notation	is	a	syntactic	feature	of	Python	that	formalizes	the	message	passing	metaphor.
The	advantage	of	using	a	language	with	a	built-in	object	system	is	that	message	passing
can	interact	seamlessly	with	other	language	features,	such	as	assignment	statements.
We	do	not	require	different	messages	to	"get"	or	"set"	the	value	associated	with	a	local
attribute	name;	the	language	syntax	allows	us	to	use	the	message	name	directly.
Dot	expressions.	The	code	fragment	spock_account.deposit	is	called	a	dot	expression.	A
dot	expression	consists	of	an	expression,	a	dot,	and	a	name:
<expression>	.	<name>

The	<expression>	can	be	any	valid	Python	expression,	but	the	<name>	must	be	a	simple
name	(not	an	expression	that	evaluates	to	a	name).	A	dot	expression	evaluates	to	the
value	of	the	attribute	with	the	given	<name>,	for	the	object	that	is	the	value	of	the
<expression>.
The	built-in	function	getattr	also	returns	an	attribute	for	an	object	by	name.	It	is	the
function	equivalent	of	dot	notation.	Using	getattr,	we	can	look	up	an	attribute	using	a
string,	just	as	we	did	with	a	dispatch	dictionary.

>>>	getattr(spock_account,	'balance')
10

We	can	also	test	whether	an	object	has	a	named	attribute	with	hasattr.

>>>	hasattr(spock_account,	'deposit')
True

The	attributes	of	an	object	include	all	of	its	instance	attributes,	along	with	all	of	the
attributes	(including	methods)	defined	in	its	class.	Methods	are	attributes	of	the	class
that	require	special	handling.
Methods	and	functions.	When	a	method	is	invoked	on	an	object,	that	object	is
implicitly	passed	as	the	first	argument	to	the	method.	That	is,	the	object	that	is	the	value
of	the	<expression>	to	the	left	of	the	dot	is	passed	automatically	as	the	first	argument	to
the	method	named	on	the	right	side	of	the	dot	expression.	As	a	result,	the	object	is
bound	to	the	parameter	self.
To	achieve	automatic	self	binding,	Python	distinguishes	between	functions,	which	we
have	been	creating	since	the	beginning	of	the	text,	and	bound	methods,	which	couple
together	a	function	and	the	object	on	which	that	method	will	be	invoked.	A	bound
method	value	is	already	associated	with	its	first	argument,	the	instance	on	which	it	was
invoked,	which	will	be	named	self	when	the	method	is	called.
We	can	see	the	difference	in	the	interactive	interpreter	by	calling	type	on	the	returned
values	of	dot	expressions.	As	an	attribute	of	a	class,	a	method	is	just	a	function,	but	as
an	attribute	of	an	instance,	it	is	a	bound	method:

>>>	type(Account.deposit)
<class	'function'>
>>>	type(spock_account.deposit)
<class	'method'>

These	two	results	differ	only	in	the	fact	that	the	first	is	a	standard	two-argument	function
with	parameters	self	and	amount.	The	second	is	a	one-argument	method,	where	the	name
self	will	be	bound	to	the	object	named	spock_account	automatically	when	the	method	is
called,	while	the	parameter	amount	will	be	bound	to	the	argument	passed	to	the	method.
Both	of	these	values,	whether	function	values	or	bound	method	values,	are	associated
with	the	same	deposit	function	body.
We	can	call	deposit	in	two	ways:	as	a	function	and	as	a	bound	method.	In	the	former
case,	we	must	supply	an	argument	for	the	self	parameter	explicitly.	In	the	latter	case,
the	self	parameter	is	bound	automatically.

>>>	Account.deposit(spock_account,	1001)		#	The	deposit	function	takes	2	arguments
1011
>>>	spock_account.deposit(1000)											#	The	deposit	method	takes	1	argument
2011

The	function	getattr	behaves	exactly	like	dot	notation:	if	its	first	argument	is	an	object
but	the	name	is	a	method	defined	in	the	class,	then	getattr	returns	a	bound	method
value.	On	the	other	hand,	if	the	first	argument	is	a	class,	then	getattr	returns	the
attribute	value	directly,	which	is	a	plain	function.
Naming	Conventions.	Class	names	are	conventionally	written	using	the	CapWords
convention	(also	called	CamelCase	because	the	capital	letters	in	the	middle	of	a	name
look	like	humps).	Method	names	follow	the	standard	convention	of	naming	functions
using	lowercased	words	separated	by	underscores.

In	some	cases,	there	are	instance	variables	and	methods	that	are	related	to	the
maintenance	and	consistency	of	an	object	that	we	don't	want	users	of	the	object	to	see
or	use.	They	are	not	part	of	the	abstraction	defined	by	a	class,	but	instead	part	of	the
implementation.	Python's	convention	dictates	that	if	an	attribute	name	starts	with	an
underscore,	it	should	only	be	accessed	within	methods	of	the	class	itself,	rather	than	by
users	of	the	class.

2.5.4			Class	Attributes

Some	attribute	values	are	shared	across	all	objects	of	a	given	class.	Such	attributes	are
associated	with	the	class	itself,	rather	than	any	individual	instance	of	the	class.	For
instance,	let	us	say	that	a	bank	pays	interest	on	the	balance	of	accounts	at	a	fixed
interest	rate.	That	interest	rate	may	change,	but	it	is	a	single	value	shared	across	all
accounts.
Class	attributes	are	created	by	assignment	statements	in	the	suite	of	a	class	statement,
outside	of	any	method	definition.	In	the	broader	developer	community,	class	attributes
may	also	be	called	class	variables	or	static	variables.	The	following	class	statement
creates	a	class	attribute	for	Account	with	the	name	interest.

>>>	class	Account:
								interest	=	0.02												#	A	class	attribute
								def	__init__(self,	account_holder):
												self.balance	=	0
												self.holder	=	account_holder
								#	Additional	methods	would	be	defined	here

This	attribute	can	still	be	accessed	from	any	instance	of	the	class.

>>>	spock_account	=	Account('Spock')
>>>	kirk_account	=	Account('Kirk')
>>>	spock_account.interest
0.02
>>>	kirk_account.interest
0.02

However,	a	single	assignment	statement	to	a	class	attribute	changes	the	value	of	the
attribute	for	all	instances	of	the	class.

>>>	Account.interest	=	0.04
>>>	spock_account.interest
0.04
>>>	kirk_account.interest
0.04

Attribute	names.	We	have	introduced	enough	complexity	into	our	object	system	that
we	have	to	specify	how	names	are	resolved	to	particular	attributes.	After	all,	we	could
easily	have	a	class	attribute	and	an	instance	attribute	with	the	same	name.
As	we	have	seen,	a	dot	expression	consists	of	an	expression,	a	dot,	and	a	name:
<expression>	.	<name>

To	evaluate	a	dot	expression:
1.	 Evaluate	the	<expression>	to	the	left	of	the	dot,	which	yields	the	object	of	the	dot

expression.
2.	 <name>	is	matched	against	the	instance	attributes	of	that	object;	if	an	attribute	with

that	name	exists,	its	value	is	returned.
3.	 If	<name>	does	not	appear	among	instance	attributes,	then	<name>	is	looked	up	in	the

class,	which	yields	a	class	attribute	value.
4.	 That	value	is	returned	unless	it	is	a	function,	in	which	case	a	bound	method	is

returned	instead.
In	this	evaluation	procedure,	instance	attributes	are	found	before	class	attributes,	just	as
local	names	have	priority	over	global	in	an	environment.	Methods	defined	within	the
class	are	combined	with	the	object	of	the	dot	expression	to	form	a	bound	method	during
the	fourth	step	of	this	evaluation	procedure.	The	procedure	for	looking	up	a	name	in	a
class	has	additional	nuances	that	will	arise	shortly,	once	we	introduce	class	inheritance.
Attribute	assignment.	All	assignment	statements	that	contain	a	dot	expression	on
their	left-hand	side	affect	attributes	for	the	object	of	that	dot	expression.	If	the	object	is
an	instance,	then	assignment	sets	an	instance	attribute.	If	the	object	is	a	class,	then
assignment	sets	a	class	attribute.	As	a	consequence	of	this	rule,	assignment	to	an
attribute	of	an	object	cannot	affect	the	attributes	of	its	class.	The	examples	below
illustrate	this	distinction.
If	we	assign	to	the	named	attribute	interest	of	an	account	instance,	we	create	a	new

instance	attribute	that	has	the	same	name	as	the	existing	class	attribute.

>>>	kirk_account.interest	=	0.08

and	that	attribute	value	will	be	returned	from	a	dot	expression.

>>>	kirk_account.interest
0.08

However,	the	class	attribute	interest	still	retains	its	original	value,	which	is	returned	for
all	other	accounts.

>>>	spock_account.interest
0.04

Changes	to	the	class	attribute	interest	will	affect	spock_account,	but	the	instance	attribute
for	kirk_account	will	be	unaffected.

>>>	Account.interest	=	0.05		#	changing	the	class	attribute
>>>	spock_account.interest					#	changes	instances	without	like-named	instance	attributes
0.05
>>>	kirk_account.interest					#	but	the	existing	instance	attribute	is	unaffected
0.08

2.5.5			Inheritance

When	working	in	the	object-oriented	programming	paradigm,	we	often	find	that	different
types	are	related.	In	particular,	we	find	that	similar	classes	differ	in	their	amount	of
specialization.	Two	classes	may	have	similar	attributes,	but	one	represents	a	special	case
of	the	other.
For	example,	we	may	want	to	implement	a	checking	account,	which	is	different	from	a
standard	account.	A	checking	account	charges	an	extra	$1	for	each	withdrawal	and	has	a
lower	interest	rate.	Here,	we	demonstrate	the	desired	behavior.

>>>	ch	=	CheckingAccount('Spock')
>>>	ch.interest					#	Lower	interest	rate	for	checking	accounts
0.01
>>>	ch.deposit(20)		#	Deposits	are	the	same
20
>>>	ch.withdraw(5)		#	withdrawals	decrease	balance	by	an	extra	charge
14

A	CheckingAccount	is	a	specialization	of	an	Account.	In	OOP	terminology,	the	generic
account	will	serve	as	the	base	class	of	CheckingAccount,	while	CheckingAccount	will	be	a
subclass	of	Account.	(The	terms	parent	class	and	superclass	are	also	used	for	the	base
class,	while	child	class	is	also	used	for	the	subclass.)
A	subclass	inherits	the	attributes	of	its	base	class,	but	may	override	certain	attributes,
including	certain	methods.	With	inheritance,	we	only	specify	what	is	different	between
the	subclass	and	the	base	class.	Anything	that	we	leave	unspecified	in	the	subclass	is
automatically	assumed	to	behave	just	as	it	would	for	the	base	class.
Inheritance	also	has	a	role	in	our	object	metaphor,	in	addition	to	being	a	useful
organizational	feature.	Inheritance	is	meant	to	represent	is-a	relationships	between
classes,	which	contrast	with	has-a	relationships.	A	checking	account	is-a	specific	type	of
account,	so	having	a	CheckingAccount	inherit	from	Account	is	an	appropriate	use	of
inheritance.	On	the	other	hand,	a	bank	has-a	list	of	bank	accounts	that	it	manages,	so
neither	should	inherit	from	the	other.	Instead,	a	list	of	account	objects	would	be	naturally
expressed	as	an	instance	attribute	of	a	bank	object.

2.5.6			Using	Inheritance

First,	we	give	a	full	implementation	of	the	Account	class,	which	includes	docstrings	for	the
class	and	its	methods.

>>>	class	Account:
								"""A	bank	account	that	has	a	non-negative	balance."""
								interest	=	0.02
								def	__init__(self,	account_holder):
												self.balance	=	0
												self.holder	=	account_holder
								def	deposit(self,	amount):
												"""Increase	the	account	balance	by	amount	and	return	the	new	balance."""
												self.balance	=	self.balance	+	amount
												return	self.balance
								def	withdraw(self,	amount):

												"""Decrease	the	account	balance	by	amount	and	return	the	new	balance."""
												if	amount	>	self.balance:
																return	'Insufficient	funds'
												self.balance	=	self.balance	-	amount
												return	self.balance

A	full	implementation	of	CheckingAccount	appears	below.	We	specify	inheritance	by	placing
an	expression	that	evaluates	to	the	base	class	in	parentheses	after	the	class	name.

>>>	class	CheckingAccount(Account):
								"""A	bank	account	that	charges	for	withdrawals."""
								withdraw_charge	=	1
								interest	=	0.01
								def	withdraw(self,	amount):
												return	Account.withdraw(self,	amount	+	self.withdraw_charge)

Here,	we	introduce	a	class	attribute	withdraw_charge	that	is	specific	to	the	CheckingAccount
class.	We	assign	a	lower	value	to	the	interest	attribute.	We	also	define	a	new	withdraw
method	to	override	the	behavior	defined	in	the	Account	class.	With	no	further	statements
in	the	class	suite,	all	other	behavior	is	inherited	from	the	base	class	Account.

>>>	checking	=	CheckingAccount('Sam')
>>>	checking.deposit(10)
10
>>>	checking.withdraw(5)
4
>>>	checking.interest
0.01

The	expression	checking.deposit	evaluates	to	a	bound	method	for	making	deposits,	which
was	defined	in	the	Account	class.	When	Python	resolves	a	name	in	a	dot	expression	that	is
not	an	attribute	of	the	instance,	it	looks	up	the	name	in	the	class.	In	fact,	the	act	of
"looking	up"	a	name	in	a	class	tries	to	find	that	name	in	every	base	class	in	the
inheritance	chain	for	the	original	object's	class.	We	can	define	this	procedure	recursively.
To	look	up	a	name	in	a	class.
1.	 If	it	names	an	attribute	in	the	class,	return	the	attribute	value.
2.	 Otherwise,	look	up	the	name	in	the	base	class,	if	there	is	one.

In	the	case	of	deposit,	Python	would	have	looked	for	the	name	first	on	the	instance,	and
then	in	the	CheckingAccount	class.	Finally,	it	would	look	in	the	Account	class,	where	deposit	is
defined.	According	to	our	evaluation	rule	for	dot	expressions,	since	deposit	is	a	function
looked	up	in	the	class	for	the	checking	instance,	the	dot	expression	evaluates	to	a	bound
method	value.	That	method	is	invoked	with	the	argument	10,	which	calls	the	deposit
method	with	self	bound	to	the	checking	object	and	amount	bound	to	10.
The	class	of	an	object	stays	constant	throughout.	Even	though	the	deposit	method	was
found	in	the	Account	class,	deposit	is	called	with	self	bound	to	an	instance	of
CheckingAccount,	not	of	Account.
Calling	ancestors.	Attributes	that	have	been	overridden	are	still	accessible	via	class
objects.	For	instance,	we	implemented	the	withdraw	method	of	CheckingAccount	by	calling
the	withdraw	method	of	Account	with	an	argument	that	included	the	withdraw_charge.
Notice	that	we	called	self.withdraw_charge	rather	than	the	equivalent
CheckingAccount.withdraw_charge.	The	benefit	of	the	former	over	the	latter	is	that	a	class
that	inherits	from	CheckingAccount	might	override	the	withdrawal	charge.	If	that	is	the
case,	we	would	like	our	implementation	of	withdraw	to	find	that	new	value	instead	of	the
old	one.
Interfaces.	It	is	extremely	common	in	object-oriented	programs	that	different	types	of
objects	will	share	the	same	attribute	names.	An	object	interface	is	a	collection	of
attributes	and	conditions	on	those	attributes.	For	example,	all	accounts	must	have
deposit	and	withdraw	methods	that	take	numerical	arguments,	as	well	as	a	balance
attribute.	The	classes	Account	and	CheckingAccount	both	implement	this	interface.
Inheritance	specifically	promotes	name	sharing	in	this	way.	In	some	programming
languages	such	as	Java,	interface	implementations	must	be	explicitly	declared.	In	others
such	as	Python,	Ruby,	and	Go,	any	object	with	the	appropriate	names	implements	an
interface.
The	parts	of	your	program	that	use	objects	(rather	than	implementing	them)	are	most
robust	to	future	changes	if	they	do	not	make	assumptions	about	object	types,	but
instead	only	about	their	attribute	names.	That	is,	they	use	the	object	abstraction,	rather
than	assuming	anything	about	its	implementation.
For	example,	let	us	say	that	we	run	a	lottery,	and	we	wish	to	deposit	$5	into	each	of	a	list
of	accounts.	The	following	implementation	does	not	assume	anything	about	the	types	of
those	accounts,	and	therefore	works	equally	well	with	any	type	of	object	that	has	a
deposit	method:

>>>	def	deposit_all(winners,	amount=5):
								for	account	in	winners:
												account.deposit(amount)

The	function	deposit_all	above	assumes	only	that	each	account	satisfies	the	account
object	abstraction,	and	so	it	will	work	with	any	other	account	classes	that	also	implement
this	interface.	Assuming	a	particular	class	of	account	would	violate	the	abstraction
barrier	of	the	account	object	abstraction.	For	example,	the	following	implementation	will
not	necessarily	work	with	new	kinds	of	accounts:

>>>	def	deposit_all(winners,	amount=5):
								for	account	in	winners:
												Account.deposit(account,	amount)

We	will	address	this	topic	in	more	detail	later	in	the	chapter.

2.5.7			Multiple	Inheritance

Python	supports	the	concept	of	a	subclass	inheriting	attributes	from	multiple	base
classes,	a	language	feature	called	multiple	inheritance.
Suppose	that	we	have	a	SavingsAccount	that	inherits	from	Account,	but	charges	customers
a	small	fee	every	time	they	make	a	deposit.

>>>	class	SavingsAccount(Account):
								deposit_charge	=	2
								def	deposit(self,	amount):
												return	Account.deposit(self,	amount	-	self.deposit_charge)

Then,	a	clever	executive	conceives	of	an	AsSeenOnTVAccount	account	with	the	best	features
of	both	CheckingAccount	and	SavingsAccount:	withdrawal	fees,	deposit	fees,	and	a	low
interest	rate.	It's	both	a	checking	and	a	savings	account	in	one!	"If	we	build	it,"	the
executive	reasons,	"someone	will	sign	up	and	pay	all	those	fees.	We'll	even	give	them	a
dollar."

>>>	class	AsSeenOnTVAccount(CheckingAccount,	SavingsAccount):
								def	__init__(self,	account_holder):
												self.holder	=	account_holder
												self.balance	=	1											#	A	free	dollar!

In	fact,	this	implementation	is	complete.	Both	withdrawal	and	deposits	will	generate	fees,
using	the	function	definitions	in	CheckingAccount	and	SavingsAccount	respectively.

>>>	such_a_deal	=	AsSeenOnTVAccount("John")
>>>	such_a_deal.balance
1
>>>	such_a_deal.deposit(20)												#	$2	fee	from	SavingsAccount.deposit
19
>>>	such_a_deal.withdraw(5)												#	$1	fee	from	CheckingAccount.withdraw
13

Non-ambiguous	references	are	resolved	correctly	as	expected:

>>>	such_a_deal.deposit_charge
2
>>>	such_a_deal.withdraw_charge
1

But	what	about	when	the	reference	is	ambiguous,	such	as	the	reference	to	the	withdraw
method	that	is	defined	in	both	Account	and	CheckingAccount?	The	figure	below	depicts	an
inheritance	graph	for	the	AsSeenOnTVAccount	class.	Each	arrow	points	from	a	subclass	to	a
base	class.

For	a	simple	"diamond"	shape	like	this,	Python	resolves	names	from	left	to	right,	then
upwards.	In	this	example,	Python	checks	for	an	attribute	name	in	the	following	classes,	in
order,	until	an	attribute	with	that	name	is	found:
AsSeenOnTVAccount,	CheckingAccount,	SavingsAccount,	Account,	object

There	is	no	correct	solution	to	the	inheritance	ordering	problem,	as	there	are	cases	in
which	we	might	prefer	to	give	precedence	to	certain	inherited	classes	over	others.
However,	any	programming	language	that	supports	multiple	inheritance	must	select
some	ordering	in	a	consistent	way,	so	that	users	of	the	language	can	predict	the
behavior	of	their	programs.
Further	reading.	Python	resolves	this	name	using	a	recursive	algorithm	called	the	C3
Method	Resolution	Ordering.	The	method	resolution	order	of	any	class	can	be	queried
using	the	mro	method	on	all	classes.

>>>	[c.__name__	for	c	in	AsSeenOnTVAccount.mro()]
['AsSeenOnTVAccount',	'CheckingAccount',	'SavingsAccount',	'Account',	'object']

The	precise	algorithm	for	finding	method	resolution	orderings	is	not	a	topic	for	this	text,
but	is	described	by	Python's	primary	author	with	a	reference	to	the	original	paper.

2.5.8			The	Role	of	Objects

The	Python	object	system	is	designed	to	make	data	abstraction	and	message	passing
both	convenient	and	flexible.	The	specialized	syntax	of	classes,	methods,	inheritance,
and	dot	expressions	all	enable	us	to	formalize	the	object	metaphor	in	our	programs,
which	improves	our	ability	to	organize	large	programs.
In	particular,	we	would	like	our	object	system	to	promote	a	separation	of	concerns
among	the	different	aspects	of	the	program.	Each	object	in	a	program	encapsulates	and
manages	some	part	of	the	program's	state,	and	each	class	statement	defines	the
functions	that	implement	some	part	of	the	program's	overall	logic.	Abstraction	barriers
enforce	the	boundaries	between	different	aspects	of	a	large	program.
Object-oriented	programming	is	particularly	well-suited	to	programs	that	model	systems
that	have	separate	but	interacting	parts.	For	instance,	different	users	interact	in	a	social
network,	different	characters	interact	in	a	game,	and	different	shapes	interact	in	a
physical	simulation.	When	representing	such	systems,	the	objects	in	a	program	often
map	naturally	onto	objects	in	the	system	being	modeled,	and	classes	represent	their
types	and	relationships.
On	the	other	hand,	classes	may	not	provide	the	best	mechanism	for	implementing
certain	abstractions.	Functional	abstractions	provide	a	more	natural	metaphor	for
representing	relationships	between	inputs	and	outputs.	One	should	not	feel	compelled	to
fit	every	bit	of	logic	in	a	program	within	a	class,	especially	when	defining	independent
functions	for	manipulating	data	is	more	natural.	Functions	can	also	enforce	a	separation
of	concerns.
Multi-paradigm	languages	such	as	Python	allow	programmers	to	match	organizational
paradigms	to	appropriate	problems.	Learning	to	identify	when	to	introduce	a	new	class,
as	opposed	to	a	new	function,	in	order	to	simplify	or	modularize	a	program,	is	an
important	design	skill	in	software	engineering	that	deserves	careful	attention.
Continue:	2.6	Implementing	Classes	and	Objects

Composing	Programs	by	John	DeNero,	based	on	the	textbook	Structure	and	Interpretation	of	Computer	Programs	by	Harold	Abelson	and	Gerald	Jay	Sussman,	is	licensed
under	a	Creative	Commons	Attribution-ShareAlike	3.0	Unported	License.

Loading	[MathJax]/extensions/jsMath2jax.js

