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2.3			Sequences

A	sequence	is	an	ordered	collection	of	values.	The	sequence	is	a	powerful,	fundamental
abstraction	in	computer	science.	Sequences	are	not	instances	of	a	particular	built-in	type
or	abstract	data	representation,	but	instead	a	collection	of	behaviors	that	are	shared
among	several	different	types	of	data.	That	is,	there	are	many	kinds	of	sequences,	but
they	all	share	common	behavior.	In	particular,
Length.	A	sequence	has	a	finite	length.	An	empty	sequence	has	length	0.
Element	selection.	A	sequence	has	an	element	corresponding	to	any	non-negative
integer	index	less	than	its	length,	starting	at	0	for	the	first	element.
Python	includes	several	native	data	types	that	are	sequences,	the	most	important	of
which	is	the	list.

2.3.1			Lists

A	list	value	is	a	sequence	that	can	have	arbitrary	length.	Lists	have	a	large	set	of	built-in
behaviors,	along	with	specific	syntax	to	express	those	behaviors.	We	have	already	seen
the	list	literal,	which	evaluates	to	a	list	instance,	as	well	as	an	element	selection
expression	that	evaluates	to	a	value	in	the	list.	The	built-in	len	function	returns	the
length	of	a	sequence.	Below,	digits	is	a	list	with	four	elements.	The	element	at	index	3	is
8.

>>>	digits	=	[1,	8,	2,	8]
>>>	len(digits)
4
>>>	digits[3]
8

Additionally,	lists	can	be	added	together	and	multiplied	by	integers.	For	sequences,
addition	and	multiplication	do	not	add	or	multiply	elements,	but	instead	combine	and
replicate	the	sequences	themselves.	That	is,	the	add	function	in	the	operator	module	(and
the	+	operator)	yields	a	list	that	is	the	concatenation	of	the	added	arguments.	The	mul
function	in	operator	(and	the	*	operator)	can	take	a	list	and	an	integer	k	to	return	the	list
that	consists	of	k	repetitions	of	the	original	list.

>>>	[2,	7]	+	digits	*	2
[2,	7,	1,	8,	2,	8,	1,	8,	2,	8]

Any	values	can	be	included	in	a	list,	including	another	list.	Element	selection	can	be
applied	multiple	times	in	order	to	select	a	deeply	nested	element	in	a	list	containing	lists.

>>>	pairs	=	[[10,	20],	[30,	40]]
>>>	pairs[1]
[30,	40]
>>>	pairs[1][0]
30

2.3.2			Sequence	Iteration

In	many	cases,	we	would	like	to	iterate	over	the	elements	of	a	sequence	and	perform
some	computation	for	each	element	in	turn.	This	pattern	is	so	common	that	Python	has
an	additional	control	statement	to	process	sequential	data:	the	for	statement.
Consider	the	problem	of	counting	how	many	times	a	value	appears	in	a	sequence.	We
can	implement	a	function	to	compute	this	count	using	a	while	loop.

>>>	def	count(s,	value):
								"""Count	the	number	of	occurrences	of	value	in	sequence	s."""
								total,	index	=	0,	0
								while	index	<	len(s):
												if	s[index]	==	value:
																total	=	total	+	1
												index	=	index	+	1
								return	total

>>>	count(digits,	8)
2

The	Python	for	statement	can	simplify	this	function	body	by	iterating	over	the	element
values	directly	without	introducing	the	name	index	at	all.

>>>	def	count(s,	value):
								"""Count	the	number	of	occurrences	of	value	in	sequence	s."""
								total	=	0
								for	elem	in	s:
												if	elem	==	value:
																total	=	total	+	1
								return	total

>>>	count(digits,	8)
2

A	for	statement	consists	of	a	single	clause	with	the	form:
for	<name>	in	<expression>:
				<suite>

A	for	statement	is	executed	by	the	following	procedure:
1.	 Evaluate	the	header	<expression>,	which	must	yield	an	iterable	value.
2.	 For	each	element	value	in	that	iterable	value,	in	order:

1.	 Bind	<name>	to	that	value	in	the	current	frame.
2.	 Execute	the	<suite>.

This	execution	procedure	refers	to	iterable	values.	Lists	are	type	of	sequence,	and
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sequences	are	iterable	values,	and	their	elements	are	considered	in	their	sequential
order.	Python	includes	other	iterable	types,	but	we	will	focus	on	sequences	for	now;	the
general	definition	of	the	term	"iterable"	appears	in	the	section	on	iterators	in	Chapter	4.
An	important	consequence	of	this	evaluation	procedure	is	that	<name>	will	be	bound	to	the
last	element	of	the	sequence	after	the	for	statement	is	executed.	The	for	loop	introduces
yet	another	way	in	which	the	environment	can	be	updated	by	a	statement.
Sequence	unpacking.	A	common	pattern	in	programs	is	to	have	a	sequence	of
elements	that	are	themselves	sequences,	but	all	of	a	fixed	length.	A	for	statement	may
include	multiple	names	in	its	header	to	"unpack"	each	element	sequence	into	its
respective	elements.	For	example,	we	may	have	a	list	of	two-element	lists.

>>>	pairs	=	[[1,	2],	[2,	2],	[2,	3],	[4,	4]]

and	wish	to	find	the	number	of	these	pairs	that	have	the	same	first	and	second	element.

>>>	same_count	=	0

The	following	for	statement	with	two	names	in	its	header	will	bind	each	name	x	and	y	to
the	first	and	second	elements	in	each	pair,	respectively.

>>>	for	x,	y	in	pairs:
								if	x	==	y:
												same_count	=	same_count	+	1

>>>	same_count
2

This	pattern	of	binding	multiple	names	to	multiple	values	in	a	fixed-length	sequence	is
called	sequence	unpacking;	it	is	the	same	pattern	that	we	see	in	assignment	statements
that	bind	multiple	names	to	multiple	values.
Ranges.	A	range	is	another	built-in	type	of	sequence	in	Python,	which	represents	a	range
of	integers.	Ranges	are	created	with	range,	which	takes	two	integer	arguments:	the	first
number	and	one	beyond	the	last	number	in	the	desired	range.

>>>	range(1,	10)		#	Includes	1,	but	not	10
range(1,	10)

Calling	the	list	constructor	on	a	range	evaluates	to	a	list	with	the	same	elements	as	the
range,	so	that	the	elements	can	be	easily	inspected.

>>>	list(range(5,	8))
[5,	6,	7]

If	only	one	argument	is	given,	it	is	interpreted	as	one	beyond	the	last	value	for	a	range
that	starts	at	0.

>>>	list(range(4))
[0,	1,	2,	3]

Ranges	commonly	appear	as	the	expression	in	a	for	header	to	specify	the	number	of
times	that	the	suite	should	be	executed:	A	common	convention	is	to	use	a	single
underscore	character	for	the	name	in	the	for	header	if	the	name	is	unused	in	the	suite:
>>>	for	_	in	range(3):
								print('Go	Bears!')

Go	Bears!
Go	Bears!
Go	Bears!

This	underscore	is	just	another	name	in	the	environment	as	far	as	the	interpreter	is
concerned,	but	has	a	conventional	meaning	among	programmers	that	indicates	the
name	will	not	appear	in	any	future	expressions.

2.3.3			Sequence	Processing

Sequences	are	such	a	common	form	of	compound	data	that	whole	programs	are	often
organized	around	this	single	abstraction.	Modular	components	that	have	sequences	as
both	inputs	and	outputs	can	be	mixed	and	matched	to	perform	data	processing.	Complex
components	can	be	defined	by	chaining	together	a	pipeline	of	sequence	processing
operations,	each	of	which	is	simple	and	focused.
List	Comprehensions.	Many	sequence	processing	operations	can	be	expressed	by
evaluating	a	fixed	expression	for	each	element	in	a	sequence	and	collecting	the	resulting
values	in	a	result	sequence.	In	Python,	a	list	comprehension	is	an	expression	that
performs	such	a	computation.

>>>	odds	=	[1,	3,	5,	7,	9]
>>>	[x+1	for	x	in	odds]
[2,	4,	6,	8,	10]

The	for	keyword	above	is	not	part	of	a	for	statement,	but	instead	part	of	a	list
comprehension	because	it	is	contained	within	square	brackets.	The	sub-expression	x+1	is
evaluated	with	x	bound	to	each	element	of	odds	in	turn,	and	the	resulting	values	are
collected	into	a	list.
Another	common	sequence	processing	operation	is	to	select	a	subset	of	values	that
satisfy	some	condition.	List	comprehensions	can	also	express	this	pattern,	for	instance
selecting	all	elements	of	odds	that	evenly	divide	25.

>>>	[x	for	x	in	odds	if	25	%	x	==	0]
[1,	5]

The	general	form	of	a	list	comprehension	is:
[<map	expression>	for	<name>	in	<sequence	expression>	if	<filter	expression>]

To	evaluate	a	list	comprehension,	Python	evaluates	the	<sequence	expression>,	which	must
return	an	iterable	value.	Then,	for	each	element	in	order,	the	element	value	is	bound	to
<name>,	the	filter	expression	is	evaluated,	and	if	it	yields	a	true	value,	the	map	expression
is	evaluated.	The	values	of	the	map	expression	are	collected	into	a	list.



Aggregation.	A	third	common	pattern	in	sequence	processing	is	to	aggregate	all	values
in	a	sequence	into	a	single	value.	The	built-in	functions	sum,	min,	and	max	are	all	examples
of	aggregation	functions.
By	combining	the	patterns	of	evaluating	an	expression	for	each	element,	selecting	a
subset	of	elements,	and	aggregating	elements,	we	can	solve	problems	using	a	sequence
processing	approach.
A	perfect	number	is	a	positive	integer	that	is	equal	to	the	sum	of	its	divisors.	The	divisors
of	n	are	positive	integers	less	than	n	that	divide	evenly	into	n.	Listing	the	divisors	of	n	can
be	expressed	with	a	list	comprehension.

>>>	def	divisors(n):
								return	[x	for	x	in	range(1,	n)	if	n	%	x	==	0]

>>>	divisors(4)
[1,	2]
>>>	divisors(12)
[1,	2,	3,	4,	6]

Using	divisors,	we	can	compute	all	perfect	numbers	from	1	to	1000	with	another	list
comprehension.	(1	is	typically	considered	to	be	a	perfect	number	as	well,	but	it	does	not
qualify	under	our	definition	of	divisors.)

>>>	[n	for	n	in	range(1,	1000)	if	sum(divisors(n))	==	n]
[6,	28,	496]

We	can	reuse	our	definition	of	divisors	to	solve	another	problem,	finding	the	minimum
perimeter	of	a	rectangle	with	integer	side	lengths,	given	its	area.	The	area	of	a	rectangle
is	its	height	times	its	width.	Therefore,	given	the	area	and	height,	we	can	compute	the
width.	We	can	assert	that	both	the	width	and	height	evenly	divide	the	area	to	ensure	that
the	side	lengths	are	integers.

>>>	def	width(area,	height):
								assert	area	%	height	==	0
								return	area	//	height

The	perimeter	of	a	rectangle	is	the	sum	of	its	side	lengths.

>>>	def	perimeter(width,	height):
								return	2	*	width	+	2	*	height

The	height	of	a	rectangle	with	integer	side	lengths	must	be	a	divisor	of	its	area.	We	can
compute	the	minimum	perimeter	by	considering	all	heights.

>>>	def	minimum_perimeter(area):
								heights	=	divisors(area)
								perimeters	=	[perimeter(width(area,	h),	h)	for	h	in	heights]
								return	min(perimeters)

>>>	area	=	80
>>>	width(area,	5)
16
>>>	perimeter(16,	5)
42
>>>	perimeter(10,	8)
36
>>>	minimum_perimeter(area)
36
>>>	[minimum_perimeter(n)	for	n	in	range(1,	10)]
[4,	6,	8,	8,	12,	10,	16,	12,	12]

Higher-Order	Functions.	The	common	patterns	we	have	observed	in	sequence
processing	can	be	expressed	using	higher-order	functions.	First,	evaluating	an	expression
for	each	element	in	a	sequence	can	be	expressed	by	applying	a	function	to	each
element.

>>>	def	apply_to_all(map_fn,	s):
								return	[map_fn(x)	for	x	in	s]

Selecting	only	elements	for	which	some	expression	is	true	can	be	expressed	by	applying
a	function	to	each	element.

>>>	def	keep_if(filter_fn,	s):
								return	[x	for	x	in	s	if	filter_fn(x)]

Finally,	many	forms	of	aggregation	can	be	expressed	as	repeatedly	applying	a	two-
argument	function	to	the	reduced	value	so	far	and	each	element	in	turn.

>>>	def	reduce(reduce_fn,	s,	initial):
								reduced	=	initial
								for	x	in	s:
												reduced	=	reduce_fn(reduced,	x)
								return	reduced

For	example,	reduce	can	be	used	to	multiply	together	all	elements	of	a	sequence.	Using
mul	as	the	reduce_fn	and	1	as	the	initial	value,	reduce	can	be	used	to	multiply	together	a
sequence	of	numbers.

>>>	reduce(mul,	[2,	4,	8],	1)
64

We	can	find	perfect	numbers	using	these	higher-order	functions	as	well.

>>>	def	divisors_of(n):
								divides_n	=	lambda	x:	n	%	x	==	0
								return	[1]	+	keep_if(divides_n,	range(2,	n))

>>>	divisors_of(12)
[1,	2,	3,	4,	6]
>>>	from	operator	import	add
>>>	def	sum_of_divisors(n):
								return	reduce(add,	divisors_of(n),	0)

>>>	def	perfect(n):
								return	sum_of_divisors(n)	==	n



>>>	keep_if(perfect,	range(1,	1000))
[1,	6,	28,	496]

Conventional	Names.	In	the	computer	science	community,	the	more	common	name
for	apply_to_all	is	map	and	the	more	common	name	for	keep_if	is	filter.	In	Python,	the
built-in	map	and	filter	are	generalizations	of	these	functions	that	do	not	return	lists.
These	functions	are	discussed	in	Chapter	4.	The	definitions	above	are	equivalent	to
applying	the	list	constructor	to	the	result	of	built-in	map	and	filter	calls.

>>>	apply_to_all	=	lambda	map_fn,	s:	list(map(map_fn,	s))
>>>	keep_if	=	lambda	filter_fn,	s:	list(filter(filter_fn,	s))

The	reduce	function	is	built	into	the	functools	module	of	the	Python	standard	library.	In	this
version,	the	initial	argument	is	optional.

>>>	from	functools	import	reduce
>>>	from	operator	import	mul
>>>	def	product(s):
								return	reduce(mul,	s)

>>>	product([1,	2,	3,	4,	5])
120

In	Python	programs,	it	is	more	common	to	use	list	comprehensions	directly	rather	than
higher-order	functions,	but	both	approaches	to	sequence	processing	are	widely	used.

2.3.4			Sequence	Abstraction

We	have	introduced	two	native	data	types	that	satisfy	the	sequence	abstraction:	lists
and	ranges.	Both	satisfy	the	conditions	with	which	we	began	this	section:	length	and
element	selection.	Python	includes	two	more	behaviors	of	sequence	types	that	extend
the	sequence	abstraction.
Membership.	A	value	can	be	tested	for	membership	in	a	sequence.	Python	has	two
operators	in	and	not	in	that	evaluate	to	True	or	False	depending	on	whether	an	element
appears	in	a	sequence.

>>>	digits
[1,	8,	2,	8]
>>>	2	in	digits
True
>>>	1828	not	in	digits
True

Slicing.	Sequences	contain	smaller	sequences	within	them.	A	slice	of	a	sequence	is	any
contiguous	span	of	the	original	sequence,	designated	by	a	pair	of	integers.	As	with	the
range	constructor,	the	first	integer	indicates	the	starting	index	of	the	slice	and	the	second
indicates	one	beyond	the	ending	index.
In	Python,	sequence	slicing	is	expressed	similarly	to	element	selection,	using	square
brackets.	A	colon	separates	the	starting	and	ending	indices.	Any	bound	that	is	omitted	is
assumed	to	be	an	extreme	value:	0	for	the	starting	index,	and	the	length	of	the
sequence	for	the	ending	index.

>>>	digits[0:2]
[1,	8]
>>>	digits[1:]
[8,	2,	8]

Slicing	can	be	used	on	the	branches	of	a	tree	as	well.	For	example,	we	may	want	to	place
a	restriction	on	the	number	of	branches	in	a	tree.	A	binary	tree	is	either	a	leaf	or	a
sequence	of	at	most	two	binary	trees.	A	common	tree	transformation	called	binarization
computes	a	binary	tree	from	an	original	tree	by	grouping	together	adjacent	branches.

>>>	def	right_binarize(tree):
								"""Construct	a	right-branching	binary	tree."""
								if	is_leaf(tree):
												return	tree
								if	len(tree)	>	2:
												tree	=	[tree[0],	tree[1:]]
								return	[right_binarize(b)	for	b	in	tree]

>>>	right_binarize([1,	2,	3,	4,	5,	6,	7])
[1,	[2,	[3,	[4,	[5,	[6,	7]]]]]]

Enumerating	these	additional	behaviors	of	the	Python	sequence	abstraction	gives	us	an
opportunity	to	reflect	upon	what	constitutes	a	useful	data	abstraction	in	general.	The
richness	of	an	abstraction	(that	is,	how	many	behaviors	it	includes)	has	consequences.
For	users	of	an	abstraction,	additional	behaviors	can	be	helpful.	On	the	other	hand,
satisfying	the	requirements	of	a	rich	abstraction	with	a	new	data	type	can	be
challenging.	Another	negative	consequence	of	rich	abstractions	is	that	they	take	longer
for	users	to	learn.
Sequences	have	a	rich	abstraction	because	they	are	so	ubiquitous	in	computing	that
learning	a	few	complex	behaviors	is	justified.	In	general,	most	user-defined	abstractions
should	be	kept	as	simple	as	possible.
Further	reading.	Slice	notation	admits	a	variety	of	special	cases,	such	as	negative
starting	values,	ending	values,	and	step	sizes.	A	complete	description	appears	in	the
subsection	called	slicing	a	list	in	Dive	Into	Python	3.	In	this	chapter,	we	will	only	use	the
basic	features	described	above.

2.3.5			Strings

Text	values	are	perhaps	more	fundamental	to	computer	science	than	even	numbers.	As	a
case	in	point,	Python	programs	are	written	and	stored	as	text.	The	native	data	type	for
text	in	Python	is	called	a	string,	and	corresponds	to	the	constructor	str.
There	are	many	details	of	how	strings	are	represented,	expressed,	and	manipulated	in
Python.	Strings	are	another	example	of	a	rich	abstraction,	one	that	requires	a	substantial
commitment	on	the	part	of	the	programmer	to	master.	This	section	serves	as	a
condensed	introduction	to	essential	string	behaviors.
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String	literals	can	express	arbitrary	text,	surrounded	by	either	single	or	double	quotation
marks.

>>>	'I	am	string!'
'I	am	string!'
>>>	"I've	got	an	apostrophe"
"I've	got	an	apostrophe"
>>>	'您好'
'您好'

We	have	seen	strings	already	in	our	code,	as	docstrings,	in	calls	to	print,	and	as	error
messages	in	assert	statements.
Strings	satisfy	the	two	basic	conditions	of	a	sequence	that	we	introduced	at	the
beginning	of	this	section:	they	have	a	length	and	they	support	element	selection.

>>>	city	=	'Berkeley'
>>>	len(city)
8
>>>	city[3]
'k'

The	elements	of	a	string	are	themselves	strings	that	have	only	a	single	character.	A
character	is	any	single	letter	of	the	alphabet,	punctuation	mark,	or	other	symbol.	Unlike
many	other	programming	languages,	Python	does	not	have	a	separate	character	type;
any	text	is	a	string,	and	strings	that	represent	single	characters	have	a	length	of	1.
Like	lists,	strings	can	also	be	combined	via	addition	and	multiplication.

>>>	'Berkeley'	+	',	CA'
'Berkeley,	CA'
>>>	'Shabu	'	*	2
'Shabu	Shabu	'

Membership.	The	behavior	of	strings	diverges	from	other	sequence	types	in	Python.
The	string	abstraction	does	not	conform	to	the	full	sequence	abstraction	that	we
described	for	lists	and	ranges.	In	particular,	the	membership	operator	in	applies	to
strings,	but	has	an	entirely	different	behavior	than	when	it	is	applied	to	sequences.	It
matches	substrings	rather	than	elements.

>>>	'here'	in	"Where's	Waldo?"
True

Multiline	Literals.	Strings	aren't	limited	to	a	single	line.	Triple	quotes	delimit	string
literals	that	span	multiple	lines.	We	have	used	this	triple	quoting	extensively	already	for
docstrings.

>>>	"""The	Zen	of	Python
claims,	Readability	counts.
Read	more:	import	this."""
'The	Zen	of	Python\nclaims,	"Readability	counts."\nRead	more:	import	this.'

In	the	printed	result	above,	the	\n	(pronounced	"backslash	en")	is	a	single	element	that
represents	a	new	line.	Although	it	appears	as	two	characters	(backslash	and	"n"),	it	is
considered	a	single	character	for	the	purposes	of	length	and	element	selection.
String	Coercion.	A	string	can	be	created	from	any	object	in	Python	by	calling	the	str
constructor	function	with	an	object	value	as	its	argument.	This	feature	of	strings	is	useful
for	constructing	descriptive	strings	from	objects	of	various	types.

>>>	str(2)	+	'	is	an	element	of	'	+	str(digits)
'2	is	an	element	of	[1,	8,	2,	8]'

Further	reading.	Encoding	text	in	computers	is	a	complex	topic.	In	this	chapter,	we	will
abstract	away	the	details	of	how	strings	are	represented.	However,	for	many
applications,	the	particular	details	of	how	strings	are	encoded	by	computers	is	essential
knowledge.	The	strings	chapter	of	Dive	Into	Python	3	provides	a	description	of	character
encodings	and	Unicode.

2.3.6			Trees

Our	ability	to	use	lists	as	the	elements	of	other	lists	provides	a	new	means	of
combination	in	our	programming	language.	This	ability	is	called	a	closure	property	of	a
data	type.	In	general,	a	method	for	combining	data	values	has	a	closure	property	if	the
result	of	combination	can	itself	be	combined	using	the	same	method.	Closure	is	the	key
to	power	in	any	means	of	combination	because	it	permits	us	to	create	hierarchical
structures	—	structures	made	up	of	parts,	which	themselves	are	made	up	of	parts,	and
so	on.
We	can	visualize	lists	in	environment	diagrams	using	box-and-pointer	notation.	A	list	is
depicted	as	adjacent	boxes	that	contain	the	elements	of	the	list.	Primitive	values	such	as
numbers,	strings,	boolean	values,	and	None	appear	within	an	element	box.	Composite
values,	such	as	function	values	and	other	lists,	are	indicated	by	an	arrow.

1 one_two	=	[1,	2]
2 nested	=	[[1,	2],	[],
3 										[[3,	False,	None],
4 											[4,	lambda:	5]]]
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Nesting	lists	within	lists	can	introduce	complexity.	The	tree	is	a	fundamental	data
abstraction	that	imposes	regularity	on	how	hierarchical	values	are	structured	and
manipulated.
A	tree	has	a	root	value	and	a	sequence	of	branches.	Each	branch	of	a	tree	is	a	tree.	A
tree	with	no	branches	is	called	a	leaf.	Any	tree	contained	within	a	tree	is	called	a	sub-tree
of	that	tree	(such	as	a	branch	of	a	branch).	The	root	value	of	a	sub-tree	of	a	tree	is	called
a	node	(or	node	value)	in	that	tree.
The	data	abstraction	for	a	tree	consists	of	the	constructor	tree	and	the	selectors	root	and
branches.	We	begin	with	a	simplified	version.

>>>	def	tree(root,	branches=[]):
								for	branch	in	branches:
												assert	is_tree(branch),	'branches	must	be	trees'
								return	[root]	+	list(branches)

>>>	def	root(tree):
								return	tree[0]

>>>	def	branches(tree):
								return	tree[1:]

A	tree	is	well-formed	only	if	it	has	a	root	value	and	all	branches	are	also	trees.	The
is_tree	function	is	applied	in	the	tree	constructor	to	verify	that	all	branches	are	well-
formed.

>>>	def	is_tree(tree):
								if	type(tree)	!=	list	or	len(tree)	<	1:
												return	False
								for	branch	in	branches(tree):
												if	not	is_tree(branch):
																return	False
								return	True

The	is_leaf	function	checks	whether	or	not	a	tree	has	branches.

>>>	def	is_leaf(tree):
								return	not	branches(tree)

Trees	can	be	constructed	by	nested	expressions.	The	following	tree	t	has	root	value	3
and	two	branches.

>>>	t	=	tree(3,	[tree(1),	tree(2,	[tree(1),	tree(1)])])
>>>	t
[3,	[1],	[2,	[1],	[1]]]
>>>	root(t)
3
>>>	branches(t)
[[1],	[2,	[1],	[1]]]
>>>	root(branches(t)[1])
2
>>>	is_leaf(t)
False
>>>	is_leaf(branches(t)[0])
True

Tree-recursive	functions	can	be	used	to	construct	trees.	For	example,	the	nth	Fibonacci
tree	has	a	root	value	of	the	nth	Fibonacci	number	and,	for	n	>	1,	two	branches	that	are
also	Fibonacci	trees.	A	Fibonacci	tree	illustrates	the	tree-recursive	computation	of	a
Fibonacci	number.

>>>	def	fib_tree(n):
								if	n	==	0	or	n	==	1:
												return	tree(n)
								else:
												left,	right	=	fib_tree(n-2),	fib_tree(n-1)
												fib_n	=	root(left)	+	root(right)
												return	tree(fib_n,	[left,	right])
>>>	fib_tree(5)
[5,	[2,	[1],	[1,	[0],	[1]]],	[3,	[1,	[0],	[1]],	[2,	[1],	[1,	[0],	[1]]]]]

Tree-recursive	functions	are	also	used	to	process	trees.	For	example,	the	count_leaves
function	counts	the	leaves	of	a	tree.

>>>	def	count_leaves(tree):
						if	is_leaf(tree):
										return	1
						else:
										branch_counts	=	[count_leaves(b)	for	b	in	branches(tree)]
										return	sum(branch_counts)
>>>	count_leaves(fib_tree(5))
8

Partition	trees.	Trees	can	also	be	used	to	represent	the	partitions	of	an	integer.	A
partition	tree	for	n	using	parts	up	to	size	m	is	a	binary	(two	branch)	tree	that	represents
the	choices	taken	during	computation.	In	a	non-leaf	partition	tree:

the	left	(index	0)	branch	contains	all	ways	of	partitioning	n	using	at	least	one	m,
the	right	(index	1)	branch	contains	partitions	using	parts	up	to	m-1,	and
the	root	value	is	m.

The	values	at	the	leaves	of	a	partition	tree	express	whether	the	path	from	the	root	of	the
tree	to	the	leaf	represents	a	successful	partition	of	n.

>>>	def	partition_tree(n,	m):
								"""Return	a	partition	tree	of	n	using	parts	of	up	to	m."""
								if	n	==	0:
												return	tree(True)
								elif	n	<	0	or	m	==	0:
												return	tree(False)
								else:
												left	=	partition_tree(n-m,	m)
												right	=	partition_tree(n,	m-1)
												return	tree(m,	[left,	right])

>>>	partition_tree(2,	2)
[2,	[True],	[1,	[1,	[True],	[False]],	[False]]]
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Printing	the	partitions	from	a	partition	tree	is	another	tree-recursive	process	that
traverses	the	tree,	constructing	each	partition	as	a	list.	Whenever	a	True	leaf	is	reached,
the	partition	is	printed.

>>>	def	print_parts(tree,	partition=[]):
								if	is_leaf(tree):
												if	root(tree):
																print('	+	'.join(partition))
								else:
												left,	right	=	branches(tree)
												m	=	str(root(tree))
												print_parts(left,	partition	+	[m])
												print_parts(right,	partition)

>>>	print_parts(partition_tree(6,	4))
4	+	2
4	+	1	+	1
3	+	3
3	+	2	+	1
3	+	1	+	1	+	1
2	+	2	+	2
2	+	2	+	1	+	1
2	+	1	+	1	+	1	+	1
1	+	1	+	1	+	1	+	1	+	1

2.3.7			Linked	Lists

So	far,	we	have	used	only	native	types	to	represent	sequences.	However,	we	can	also
develop	sequence	representations	that	are	not	built	into	Python.	A	common
representation	of	a	sequence	constructed	from	nested	pairs	is	called	a	linked	list.	The
environment	diagram	below	illustrates	the	linked	list	representation	of	a	four-element
sequence	containing	1,	2,	3,	and	4.

1 four	=	[1,	[2,	[3,	[4,	'empty']]]]
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A	linked	list	is	a	pair	containing	the	first	element	of	the	sequence	(in	this	case	1)	and	the
rest	of	the	sequence	(in	this	case	a	representation	of	2,	3,	4).	The	second	element	is	also
a	linked	list.	The	rest	of	the	inner-most	linked	list	containing	only	4	is	'empty',	a	value	that
represents	an	empty	linked	list.
Linked	lists	have	recursive	structure:	the	rest	of	a	linked	list	is	a	linked	list	or	'empty'.	We
can	define	an	abstract	data	representation	to	validate,	construct,	and	select	the
components	of	linked	lists.

>>>	empty	=	'empty'
>>>	def	is_link(s):
								"""s	is	a	linked	list	if	it	is	empty	or	a	(first,	rest)	pair."""
								return	s	==	empty	or	(len(s)	==	2	and	is_link(s[1]))

>>>	def	link(first,	rest):
								"""Construct	a	linked	list	from	its	first	element	and	the	rest."""
								assert	is_link(rest),	"rest	must	be	a	linked	list."
								return	[first,	rest]

>>>	def	first(s):
								"""Return	the	first	element	of	a	linked	list	s."""
								assert	is_link(s),	"first	only	applies	to	linked	lists."
								assert	s	!=	empty,	"empty	linked	list	has	no	first	element."
								return	s[0]

>>>	def	rest(s):
								"""Return	the	rest	of	the	elements	of	a	linked	list	s."""
								assert	is_link(s),	"rest	only	applies	to	linked	lists."
								assert	s	!=	empty,	"empty	linked	list	has	no	rest."
								return	s[1]

Above,	link	is	a	constructor	and	first	and	rest	are	selectors	for	an	abstract	data
representation	of	linked	lists.	The	behavior	condition	for	a	linked	list	is	that,	like	a	pair,	its
constructor	and	selectors	are	inverse	functions.

If	a	linked	list	s	was	constructed	from	first	element	f	and	linked	list	r,	then	first(s)
returns	f,	and	rest(s)	returns	r.

We	can	use	the	constructor	and	selectors	to	manipulate	linked	lists.

>>>	four	=	link(1,	link(2,	link(3,	link(4,	empty))))
>>>	first(four)
1
>>>	rest(four)
[2,	[3,	[4,	'empty']]]

Our	implementation	of	this	kind	of	abstract	data	uses	pairs	that	are	two-element	list
values.	It	is	worth	noting	that	we	were	also	able	to	implement	pairs	using	functions,	and
we	can	implement	linked	lists	using	any	pairs,	therefore	we	could	implement	linked	lists
using	functions	alone.
The	linked	list	can	store	a	sequence	of	values	in	order,	but	we	have	not	yet	shown	that	it
satisfies	the	sequence	abstraction.	Using	the	abstract	data	representation	we	have
defined,	we	can	implement	the	two	behaviors	that	characterize	a	sequence:	length	and
element	selection.

>>>	def	len_link(s):
								"""Return	the	length	of	linked	list	s."""
								length	=	0
								while	s	!=	empty:
												s,	length	=	rest(s),	length	+	1
								return	length
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>>>	def	getitem_link(s,	i):
								"""Return	the	element	at	index	i	of	linked	list	s."""
								while	i	>	0:
												s,	i	=	rest(s),	i	-	1
								return	first(s)

Now,	we	can	manipulate	a	linked	list	as	a	sequence	using	these	functions.	(We	cannot
yet	use	the	built-in	len	function,	element	selection	syntax,	or	for	statement,	but	we	will
soon.)

>>>	len_link(four)
4
>>>	getitem_link(four,	1)
2

The	series	of	environment	diagrams	below	illustrate	the	iterative	process	by	which
getitem_link	finds	the	element	2	at	index	1	in	a	linked	list.	Below,	we	have	defined	the
linked	list	four	using	Python	primitives	to	simplify	the	diagrams.	This	implementation
choice	violates	an	abstraction	barrier,	but	allows	us	to	inspect	the	computational	process
more	easily	for	this	example.

1 def	first(s):
2 				return	s[0]
3 def	rest(s):
4 				return	s[1]
5
6 def	getitem_link(s,	i):
7 				while	i	>	0:
8 								s,	i	=	rest(s),	i	-	1
9 				return	first(s)
10
11 four	=	[1,	[2,	[3,	[4,	'empty']]]]
12 getitem_link(four,	1)
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First,	the	function	getitem_link	is	called,	creating	a	local	frame.

1 def	first(s):
2 				return	s[0]
3 def	rest(s):
4 				return	s[1]
5
6 def	getitem_link(s,	i):
7 				while	i	>	0:
8 								s,	i	=	rest(s),	i	-	1
9 				return	first(s)
10
11 four	=	[1,	[2,	[3,	[4,	'empty']]]]
12 getitem_link(four,	1)
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The	expression	in	the	while	header	evaluates	to	true,	which	causes	the	assignment
statement	in	the	while	suite	to	be	executed.	The	function	rest	returns	the	sublist	starting
with	2.

1 def	first(s):
2 				return	s[0]
3 def	rest(s):
4 				return	s[1]
5
6 def	getitem_link(s,	i):
7 				while	i	>	0:
8 								s,	i	=	rest(s),	i	-	1
9 				return	first(s)
10
11 four	=	[1,	[2,	[3,	[4,	'empty']]]]
12 getitem_link(four,	1)
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Next,	the	local	name	s	will	be	updated	to	refer	to	the	sub-list	that	begins	with	the	second
element	of	the	original	list.	Evaluating	the	while	header	expression	now	yields	a	false
value,	and	so	Python	evaluates	the	expression	in	the	return	statement	on	the	final	line	of
getitem_link.

1 def	first(s):
2 				return	s[0]
3 def	rest(s):
4 				return	s[1]
5
6 def	getitem_link(s,	i):
7 				while	i	>	0:
8 								s,	i	=	rest(s),	i	-	1
9 				return	first(s)
10
11 four	=	[1,	[2,	[3,	[4,	'empty']]]]
12 getitem_link(four,	1)
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This	final	environment	diagram	shows	the	local	frame	for	the	call	to	first,	which	contains
the	name	s	bound	to	that	same	sub-list.	The	first	function	selects	the	value	2	and
returns	it,	which	will	also	be	returned	from	getitem_link.
This	example	demonstrates	a	common	pattern	of	computation	with	linked	lists,	where
each	step	in	an	iteration	operates	on	an	increasingly	shorter	suffix	of	the	original	list.
This	incremental	processing	to	find	the	length	and	elements	of	a	linked	list	does	take
some	time	to	compute.	Python's	built-in	sequence	types	are	implemented	in	a	different
way	that	does	not	have	a	large	cost	for	computing	the	length	of	a	sequence	or	retrieving
its	elements.	The	details	of	that	representation	are	beyond	the	scope	of	this	text.
Recursive	manipulation.	Both	len_link	and	getitem_link	are	iterative.	They	peel	away
each	layer	of	nested	pair	until	the	end	of	the	list	(in	len_link)	or	the	desired	element	(in
getitem_link)	is	reached.	We	can	also	implement	length	and	element	selection	using
recursion.

>>>	def	len_link_recursive(s):
								"""Return	the	length	of	a	linked	list	s."""
								if	s	==	empty:
												return	0
								return	1	+	len_link_recursive(rest(s))

>>>	def	getitem_link_recursive(s,	i):
								"""Return	the	element	at	index	i	of	linked	list	s."""
								if	i	==	0:
												return	first(s)
								return	getitem_link_recursive(rest(s),	i	-	1)

>>>	len_link_recursive(four)
4
>>>	getitem_link_recursive(four,	1)
2

These	recursive	implementations	follow	the	chain	of	pairs	until	the	end	of	the	list	(in
len_link_recursive)	or	the	desired	element	(in	getitem_link_recursive)	is	reached.
Recursion	is	also	useful	for	transforming	and	combining	linked	lists.

>>>	def	extend_link(s,	t):
								"""Return	a	list	with	the	elements	of	s	followed	by	those	of	t."""
								assert	is_link(s)	and	is_link(t)
								if	s	==	empty:
												return	t
								else:
												return	link(first(s),	extend_link(rest(s),	t))

>>>	extend_link(four,	four)
[1,	[2,	[3,	[4,	[1,	[2,	[3,	[4,	'empty']]]]]]]]

>>>	def	apply_to_all_link(f,	s):
								"""Apply	f	to	each	element	of	s."""
								assert	is_link(s)
								if	s	==	empty:
												return	s
								else:
												return	link(f(first(s)),	apply_to_all_link(f,	rest(s)))

>>>	apply_to_all_link(lambda	x:	x*x,	four)
[1,	[4,	[9,	[16,	'empty']]]]

>>>	def	keep_if_link(f,	s):
								"""Return	a	list	with	elements	of	s	for	which	f(e)	is	true."""
								assert	is_link(s)
								if	s	==	empty:
												return	s
								else:
												kept	=	keep_if_link(f,	rest(s))
												if	f(first(s)):
																return	link(first(s),	kept)
												else:
																return	kept

>>>	keep_if_link(lambda	x:	x%2	==	0,	four)
[2,	[4,	'empty']]

>>>	def	join_link(s,	separator):



								"""Return	a	string	of	all	elements	in	s	separated	by	separator."""
								if	s	==	empty:
												return	""
								elif	rest(s)	==	empty:
												return	str(first(s))
								else:
												return	str(first(s))	+	separator	+	join_link(rest(s),	separator)

>>>	join_link(four,	",	")
'1,	2,	3,	4'

Recursive	Construction.	Linked	lists	are	particularly	useful	when	constructing
sequences	incrementally,	a	situation	that	arises	often	in	recursive	computations.
The	count_partitions	function	from	Chapter	1	counted	the	number	of	ways	to	partition	an
integer	n	using	parts	up	to	size	m	via	a	tree-recursive	process.	With	sequences,	we	can
also	enumerate	these	partitions	explicitly	using	a	similar	process.
We	follow	the	same	recursive	analysis	of	the	problem	as	we	did	while	counting:
partitioning	n	using	integers	up	to	m	involves	either
1.	 partitioning	n-m	using	integers	up	to	m,	or
2.	 partitioning	n	using	integers	up	to	m-1.

For	base	cases,	we	find	that	0	has	an	empty	partition,	while	partitioning	a	negative
integer	or	using	parts	smaller	than	1	is	impossible.

>>>	def	partitions(n,	m):
								"""Return	a	linked	list	of	partitions	of	n	using	parts	of	up	to	m.
								Each	partition	is	represented	as	a	linked	list.
								"""
								if	n	==	0:
												return	link(empty,	empty)	#	A	list	containing	the	empty	partition
								elif	n	<	0	or	m	==	0:
												return	empty
								else:
												using_m	=	partitions(n-m,	m)
												with_m	=	apply_to_all_link(lambda	s:	link(m,	s),	using_m)
												without_m	=	partitions(n,	m-1)
												return	extend_link(with_m,	without_m)

In	the	recursive	case,	we	construct	two	sublists	of	partitions.	The	first	uses	m,	and	so	we
prepend	m	to	each	element	of	the	result	using_m	to	form	with_m.
The	result	of	partitions	is	highly	nested:	a	linked	list	of	linked	lists,	and	each	linked	list	is
represented	as	nested	pairs	that	are	list	values.	Using	join_link	with	appropriate
separators,	we	can	display	the	partitions	in	a	human-readable	manner.

>>>	def	print_partitions(n,	m):
								lists	=	partitions(n,	m)
								strings	=	apply_to_all_link(lambda	s:	join_link(s,	"	+	"),	lists)
								print(join_link(strings,	"\n"))

>>>	print_partitions(6,	4)
4	+	2
4	+	1	+	1
3	+	3
3	+	2	+	1
3	+	1	+	1	+	1
2	+	2	+	2
2	+	2	+	1	+	1
2	+	1	+	1	+	1	+	1
1	+	1	+	1	+	1	+	1	+	1
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