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2.7	Hopfield	Network
In	the	beginning	of	the	1980s	Hopfield	published	two	scientific	papers,	which	attracted	much	interest.	This	was
the	starting	point	of	the	new	era	of	neural	networks,	which	continues	today.

Hopfield	showed	that	models	of	physical	systems	could	be	used	to	solve	computational	problems.	Such	systems
could	be	implemented	in	hardware	by	combining	standard	components	such	as	capacitors	and	resistors.

The	importance	of	the	different	Hopfield	networks	in	practical	application	is	limited	due	to	theoretical	limitations
of	the	network	structure	but,	in	certain	situations,	they	may	form	interesting	models.	Hopfield	networks	are
typically	used	for	classification	problems	with	binary	pattern	vectors.

The	Hopfield	network	is	created	by	supplying	input	data	vectors,	or	pattern	vectors,	corresponding	to	the	different
classes.	These	patterns	are	called	class	patterns.	In	an	n-dimensional	data	space	the	class	patterns	should	have	n
binary	components	{1,-1};	that	is,	each	class	pattern	corresponds	to	a	corner	of	a	cube	in	an	n-dimensional	space.
The	network	is	then	used	to	classify	distorted	patterns	into	these	classes.	When	a	distorted	pattern	is	presented	to
the	network,	then	it	is	associated	with	another	pattern.	If	the	network	works	properly,	this	associated	pattern	is
one	of	the	class	patterns.	In	some	cases	(when	the	different	class	patterns	are	correlated),	spurious	minima	can
also	appear.	This	means	that	some	patterns	are	associated	with	patterns	that	are	not	among	the	pattern	vectors.

Hopfield	networks	are	sometimes	called	associative	networks	since	they	associate	a	class	pattern	to	each	input
pattern.

The	Neural	Networks	package	supports	two	types	of	Hopfield	networks,	a	continuous-time	version	and	a	discrete-
time	version.	Both	network	types	have	a	matrix	of	weights	W	defined	as

where	D	is	the	number	of	class	patterns	{ ,	...,	 },	vectors	consisting	of	+/-1	elements,	to	be	stored	in	the
network,	and	n	is	the	number	of	components,	the	dimension,	of	the	class	pattern	vectors.

Discrete-time	Hopfield	networks	have	the	following	dynamics:

Eq.	(2.26)	is	applied	to	one	state,	x(t),	at	a	time.	At	each	iteration	the	state	to	be	updated	is	chosen	randomly.	This
asynchronous	update	process	is	necessary	for	the	network	to	converge,	which	means	that	x(t)=Sign[W	x(t)].

A	distorted	pattern,	x(0),	is	used	as	initial	state	for	the	Eq.	(2.0),	and	the	associated	pattern	is	the	state	toward
which	the	difference	equation	converges.	That	is,	starting	with	x(0)	and	then	iterating	Eq.	(2.0)	gives	the
associated	pattern	when	the	equation	converged.

For	a	discrete-time	Hopfield	network,	the	energy	of	a	certain	vector	x	is	given	by

It	can	be	shown	that,	given	an	initial	state	vector	x(0),	x(t)	in	Eq.	(2.26)	will	converge	to	a	value	having	minimum
energy.	Therefore,	the	minima	of	Eq.	(2.27)	constitute	possible	convergence	points	of	the	Hopfield	network	and,
ideally,	these	minima	are	identical	to	the	class	patterns	{ ,	...,	 }.	Hence,	one	can	guarantee	that	the
Hopfield	network	will	converge	to	some	pattern,	but	one	cannot	guarantee	that	it	will	converge	to	the	right
pattern.

Note	that	the	energy	function	can	take	negative	values;	this	is,	however,	just	a	matter	of	scaling.	Adding	a
sufficiently	large	constant	to	the	energy	expression	it	can	be	made	positive.

The	continuous	Hopfield	network	is	described	by	the	following	differential	equation

http://reference.wolfram.com/applications/neuralnetworks/NeuralNetworkTheory/2.7.0.html Go MAY SEP OCT

05
2014 2015 2016

5	captures
	 	

	
31	May	2010	-	5	Sep	2015 	About	this	capture



Newsletter »

The	continuous	Hopfield	network	is	described	by	the	following	differential	equation

where	x(t)	is	the	state	vector	of	the	network,	W	represents	the	parametric	weights,	and	 	is	a	nonlinearity	acting
on	the	states	x(t).	The	weights	W	are	defined	in	Eq.	(2.25).	The	differential	equation,	Eq.	(2.28),	is	solved	using	an
Euler	simulation.

To	define	a	continuous-time	Hopfield	network,	you	have	to	choose	the	nonlinear	function	 .	There	are	two	choices
supported	by	the	package,	SaturatedLinear	and	the	default	nonlinearity	of	Tanh.

For	a	continuous-time	Hopfield	network,	defined	by	the	parameters	given	in	Eq.	(2.25),	one	can	define	the	energy
of	a	particular	state	vector	x	as

As	for	the	discrete-time	network,	it	can	be	shown	that	given	an	initial	state	vector	x(0) 	the	state	vector	x(t)	in	Eq.
(2.28)	converges	to	a	local	energy	minimum.	Hence,	the	minima	of	Eq.	(2.29)	constitute	the	possible	convergence
points	of	the	Hopfield	network	and	ideally	these	minima	are	identical	to	the	class	patterns	{ ,	...,	 }.
However,	there	is	no	guarantee	that	the	minima	will	coincide	with	this	set	of	class	patterns.

Examples	with	Hopfield	nets	can	be	found	in	Section	9.2.
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