
Chapter	2
Hide	contents

2.1	Introduction

2.1.1	The	Object	Metaphor
2.1.2	Native	Data	Types

2.2	Data	Abstraction

2.2.1	Example:	Arithmetic	on
Rational	Numbers
2.2.2	Pairs
2.2.3	Abstraction	Barriers
2.2.4	The	Properties	of	Data

2.3	Sequences

2.3.1	Tuples
2.3.2	Sequence	Iteration
2.3.3	Sequence	Abstraction
2.3.4	Nested	Pairs
2.3.5	Recursive	Lists
2.3.6	Strings
2.3.7	Sequence	Processing

2.4	Mutable	Data

2.4.1	Lists
2.4.2	Dictionaries
2.4.3	Local	State
2.4.4	The	Benefits	of	Non-
Local	Assignment
2.4.5	The	Cost	of	Non-Local
Assignment
2.4.6	Implementing	Lists	and
Dictionaries
2.4.7	Dispatch	Dictionaries
2.4.8	Propagating	Constraints

2.5	Object-Oriented
Programming

2.5.1	Objects	and	Classes
2.5.2	Defining	Classes
2.5.3	Message	Passing	and
Dot	Expressions
2.5.4	Class	Attributes
2.5.5	Inheritance
2.5.6	Using	Inheritance
2.5.7	Multiple	Inheritance
2.5.8	Functions	as	Objects
2.5.9	The	Role	of	Objects

2.6	Implementing	Classes
and	Objects

2.6.1	Instances
2.6.2	Classes
2.6.3	Using	Implemented
Objects

2.7	Recursive	Data
Structures

2.7.1	A	Recursive	List	Class
2.7.2	Hierarchical	Structures
2.7.3	Memoization
2.7.4	Orders	of	Growth
2.7.5	Example:
Exponentiation
2.7.6	Sets

2.8	Generic	Operations

2.7			Recursive	Data	Structures

Objects	can	have	other	objects	as	attribute	values.	When	an	object	of	some	class	has	an
attribute	value	of	that	same	class,	the	result	is	a	recursive	data	structure.

2.7.1			A	Recursive	List	Class

A	recursive	list,	introduced	earlier	in	this	chapter,	is	an	abstract	data	type	composed	of	a
first	element	and	the	rest	of	the	list.	The	rest	of	a	recursive	list	is	itself	a	recursive	list.
The	empty	list	is	treated	as	a	special	case	that	has	no	first	element	or	rest.	A	recursive
list	is	a	sequence:	it	has	a	finite	length	and	supports	element	selection	by	index.
We	can	now	implement	a	class	with	the	same	behavior.	In	this	version,	we	will	define	its
behavior	using	special	method	names	that	allow	our	class	to	work	with	the	built-in	len
function	and	element	selection	operator	(square	brackets	or	operator.getitem)	in	Python.
These	built-in	functions	invoke	special	method	names	of	a	class:	length	is	computed	by
__len__	and	element	selection	is	computed	by	__getitem__.

>>>	class	Rlist:
								"""A	recursive	list	consisting	of	a	first	element	and	the	rest."""
								class	EmptyList(object):
												def	__len__(self):
																return	0
								empty	=	EmptyList()
								def	__init__(self,	first,	rest=empty):
												self.first	=	first
												self.rest	=	rest
								def	__getitem__(self,	i):
												if	i	==	0:
																return	self.first
												else:
																return	self.rest[i-1]
								def	__len__(self):
												return	1	+	len(self.rest)

>>>	s	=	Rlist(3,	Rlist(4,	Rlist(5)))
>>>	len(s)
3
>>>	s[1]
4

The	definitions	of	__len__	and	__getitem__	are	in	fact	recursive.	The	built-in	Python
function	len	invokes	a	method	called	__len__	when	applied	to	a	user-defined	object
argument.	Likewise,	the	element	selection	operator	invokes	a	method	called	__getitem__.
Thus,	bodies	of	these	two	methods	will	call	themselves	indirectly.
Our	implementation	is	complete,	but	an	instance	of	the	Rlist	class	is	currently	difficult	to
inspect.	To	help	with	debugging,	we	can	also	define	a	function	to	convert	an	Rlist	to	a
string	expression.

>>>	def	rlist_expression(s):
								"""Return	a	string	that	would	evaluate	to	s."""
								if	s.rest	is	Rlist.empty:
												rest	=	''
								else:
												rest	=	',	'	+	rlist_expression(s.rest)
								return	'Rlist({0}{1})'.format(s.first,	rest)

>>>	rlist_expression(s)
'Rlist(3,	Rlist(4,	Rlist(5)))'

This	way	of	displaying	an	Rlist	is	so	convenient	that	we	would	like	to	use	it	whenever	an
Rlist	instance	is	displayed.	We	can	ensure	this	behavior	by	setting	the	rlist_expression
function	as	the	value	of	a	special	class	attribute	__repr__.	Python	displays	instances	of
user-defined	classes	by	invoking	their	__repr__	method.

>>>	Rlist.__repr__	=	rlist_expression
>>>	s
Rlist(3,	Rlist(4,	Rlist(5)))

Using	the	Rlist	class,	we	can	define	some	common	operations	on	recursive	lists.	For
example,	we	can	create	a	new	Rlist	that	contains	all	elements	of	two	input	Rlists.

>>>	def	extend_rlist(s1,	s2):
								"""Return	an	Rlist	with	the	elements	of	s1	followed	by	those	of	s2."""
								if	s1	is	Rlist.empty:
												return	s2
								else:
												return	Rlist(s1.first,	extend_rlist(s1.rest,	s2))

Then,	for	example,	we	can	extend	the	rest	of	s	with	s.

>>>	extend_rlist(s.rest,	s)
Rlist(4,	Rlist(5,	Rlist(3,	Rlist(4,	Rlist(5)))))

The	implementation	for	mapping	a	function	over	a	recursive	list	has	a	similar	structure.

C⚬MP⚬SING	PR⚬GRAMS	VERSION	1,	Replaced	July	2014

2.8.1	String	Conversion
2.8.2	Multiple
Representations
2.8.3	Special	Methods
2.8.4	Generic	Functions

Objects

tuple
0 1 2
	 	 5

tuple
0 1
1 2

tuple
0 1
3 4

Objects

func	count_leaves(tree)

tuple
0 1 2
	 	 5

tuple
0 1
1 2

tuple
0 1
3 4

>>>	def	map_rlist(s,	fn):
								if	s	is	Rlist.empty:
												return	s
								else:
												return	Rlist(fn(s.first),	map_rlist(s.rest,	fn))

>>>	map_rlist(s,	square)
Rlist(9,	Rlist(16,	Rlist(25)))

Filtering	includes	an	additional	conditional	statement,	but	also	has	a	similar	recursive
structure.

>>>	def	filter_rlist(s,	fn):
								if	s	is	Rlist.empty:
												return	s
								else:
												rest	=	filter_rlist(s.rest,	fn)
												if	fn(s.first):
																return	Rlist(s.first,	rest)
												else:
																return	rest

>>>	filter_rlist(s,	lambda	x:	x	%	2	==	1)
Rlist(3,	Rlist(5))

Recursive	implementations	of	list	operations	do	not,	in	general,	require	local	assignment
or	while	statements.	Instead,	recursive	lists	can	be	taken	apart	and	constructed
incrementally	as	a	consequence	of	function	application.

2.7.2			Hierarchical	Structures

Hierarchical	structures	result	from	the	closure	property	of	data,	which	asserts	for
example	that	tuples	can	contain	other	tuples.	For	instance,	consider	this	nested
representation	of	the	numbers	1	through	5.	This	tuple	is	a	length-three	sequence,	of
which	the	first	two	elements	are	themselves	tuples.	A	tuple	that	contains	tuples	or	other
values	is	a	tree.

1 t	=	((1,	2),	(3,	4),	5)

Edit	code	in	Online	Python	Tutor

< Back 	 Program	terminated 	 Forward >

Frames

Global	frame

t 	

In	a	tree,	each	subtree	is	itself	a	tree.	As	a	base	condition,	any	bare	element	that	is	not	a
tuple	is	itself	a	simple	tree,	one	with	no	branches.	That	is,	the	numbers	are	all	trees,	as	is
the	pair	(1,	2)	and	the	structure	as	a	whole.
Recursion	is	a	natural	tool	for	dealing	with	tree	structures,	since	we	can	often	perform
operations	on	trees	by	performing	the	same	operations	on	each	of	their	branches,	and
likewise	on	the	branches	of	the	branches	until	we	reach	the	leaves	of	the	tree.	As	an
example,	we	can	implement	a	count_leaves	function,	which	returns	the	total	number	of
leaves	of	a	tree.	Step	through	this	function	to	see	how	the	leaves	are	counted.

1 def	count_leaves(tree):
2 				if	type(tree)	!=	tuple:
3 								return	1
4 				else:
5 								return	sum(map(count_leaves,	tree))
6
7 t	=	((1,	2),	(3,	4),	5)
8 result	=	count_leaves(t)

Edit	code	in	Online	Python	Tutor

< Back 	 Step	3	of	27 	 Forward >

Frames

Global	frame

count_leaves 	
t 	

Just	as	map	is	a	powerful	tool	for	dealing	with	sequences,	mapping	and	recursion	together
provide	a	powerful	general	form	of	computation	for	manipulating	trees.	For	instance,	we
can	square	all	leaves	of	a	tree	using	a	higher-order	recursive	function	map_tree	that	is
structured	quite	similarly	to	count_leaves.

>>>	def	map_tree(tree,	fn):
								"""Map	fn	over	all	leaves	in	tree."""
								if	type(tree)	!=	tuple:
												return	fn(tree)
								else:
												return	tuple(map_tree(branch,	fn)	for	branch	in	tree)

>>>	t	=	((1,	2),	(3,	4),	5)
>>>	map_tree(t,	square)

((1,	4),	(9,	16),	25)

Internal	values.	The	trees	described	above	have	values	only	at	the	leaves.	Another
common	representation	of	tree-structured	data	has	values	for	the	internal	nodes	of	the
tree	as	well.	An	internal	value	is	called	an	entry	in	the	tree.	The	Tree	class	below
represents	such	trees,	in	which	each	tree	has	at	most	two	branches	left	and	right.

>>>	class	Tree:
								def	__init__(self,	entry,	left=None,	right=None):
												self.entry	=	entry
												self.left	=	left
												self.right	=	right
								def	__repr__(self):
												if	self.left	or	self.right:
																args	=	self.entry,	self.left,	self.right
																return	'Tree({0},	{1},	{2})'.format(*args)
												else:
																return	'Tree({0})'.format(self.entry)

The	Tree	class	can	represent,	for	instance,	the	values	computed	in	an	expression	tree	for
the	recursive	implementation	of	fib,	the	function	for	computing	Fibonacci	numbers.	The
function	fib_tree(n)	below	returns	a	Tree	that	has	the	nth	Fibonacci	number	as	its	entry
and	a	trace	of	all	previously	computed	Fibonacci	numbers	within	its	branches.

>>>	def	fib_tree(n):
								"""Return	a	Tree	that	represents	a	recursive	Fibonacci	calculation."""
								if	n	==	1:
												return	Tree(0)
								elif	n	==	2:
												return	Tree(1)
								else:
												left	=	fib_tree(n-2)
												right	=	fib_tree(n-1)
												return	Tree(left.entry	+	right.entry,	left,	right)

>>>	fib_tree(5)
Tree(3,	Tree(1,	Tree(0),	Tree(1)),	Tree(2,	Tree(1),	Tree(1,	Tree(0),	Tree(1))))

Trees	represented	in	this	way	are	also	processed	using	recursive	functions.	For	example,
we	can	sum	the	entries	of	a	tree.	As	a	base	case,	we	return	that	an	empty	branch	has	no
entries.

>>>	def	sum_entries(t):
								"""Sum	the	entries	of	a	Tree	instance,	which	may	be	None."""
								if	t	is	None:
												return	0
								else:
												return	t.entry	+	sum_entries(t.left)	+	sum_entries(t.right)

>>>	sum_entries(fib_tree(5))
10

2.7.3			Memoization

The	fib_tree	function	above	can	generate	very	large	trees.	For	example,	fib_tree(35)
consists	of	18,454,929	instances	of	the	Tree	class.	However,	many	of	those	trees	are
identical	in	structure.	For	example,	both	the	left	tree	and	the	right	of	the	right	tree	are
the	result	of	calling	fib_tree(33).	It	would	save	an	enormous	amount	of	time	and	memory
to	create	one	such	subtree	and	use	it	multiple	times.
Tree-recursive	data	structures	and	computational	processes	can	often	be	made	more
efficient	through	memoization,	a	powerful	technique	for	increasing	the	efficiency	of
recursive	functions	that	repeat	computation.	A	memoized	function	will	store	the	return
value	for	any	arguments	it	has	previously	received.	A	second	call	to	fib_tree(33)	would
not	build	an	entirely	new	tree,	but	instead	return	the	existing	one	that	has	already	been
constructed.	Within	the	enormous	structure	computed	by	fib_tree(35),	there	are	only	35
unique	trees	(one	for	each	Fibonacci	number).
Memoization	can	be	expressed	naturally	as	a	higher-order	function,	which	can	also	be
used	as	a	decorator.	The	definition	below	creates	a	cache	of	previously	computed	results,
indexed	by	the	arguments	from	which	they	were	computed.	The	use	of	a	dictionary
requires	that	the	argument	to	the	memoized	function	be	ammutable.

>>>	def	memo(f):
								"""Return	a	memoized	version	of	single-argument	function	f."""
								cache	=	{}
								def	memoized(n):
												if	n	not	in	cache:
																cache[n]	=	f(n)
												return	cache[n]
								return	memoized

We	can	apply	memo	in	a	recursive	computation	of	Fibonacci	numbers.

>>>	@memo
				def	fib(n):
								if	n	==	1:
												return	0
								if	n	==	2:
												return	1
								return	fib(n-2)	+	fib(n-1)

Objects

func	sqrt(...)

func	count_factors(n)

>>>	fib(35)
5702887

We	can	also	apply	memo	to	construct	a	Fibonacci	tree,	where	repeated	subtrees	are	only
created	once	by	the	memoized	version	of	fib_tree,	but	are	used	multiple	times	as
branches	of	different	larger	trees.

>>>	fib_tree	=	memo(fib_tree)
>>>	big_fib_tree	=	fib_tree(35)
>>>	big_fib_tree.entry
5702887
>>>	big_fib_tree.left	is	big_fib_tree.right.right
True
>>>	sum_entries	=	memo(sum_entries)
>>>	sum_entries(big_fib_tree)
142587180

The	amount	of	computation	time	and	memory	saved	by	memoization	in	these	cases	is
substantial.	Instead	of	creating	18,454,929	different	instances	of	the	Tree	class,	we	now
create	only	35.

2.7.4			Orders	of	Growth

The	previous	examples	illustrate	that	processes	can	differ	considerably	in	the	rates	at
which	they	consume	the	computational	resources	of	space	and	time.	For	some	functions,
we	can	exactly	predict	the	number	of	steps	in	the	computational	process	evolved	by
those	functions.	For	example,	consider	the	function	count_factors	below	that	counts	the
number	of	integers	that	evenly	divide	an	input	n,	by	attempting	to	divide	it	by	every
integer	less	than	or	equal	to	its	square	root.	The	implementation	takes	advantage	of	the
fact	that	if	 	divides	 	and	 	,	then	there	is	another	factor	 	such	that	 .

1 from	math	import	sqrt
2 def	count_factors(n):
3 				sqrt_n	=	sqrt(n)
4 				k,	factors	=	1,	0
5 				while	k	<	sqrt_n:
6 								if	n	%	k	==	0:
7 												factors	+=	2
8 								k	+=	1
9 				if	k	*	k	==	n:
10 								factors	+=	1
11 				return	factors
12
13 result	=	count_factors(576)

Edit	code	in	Online	Python	Tutor

< Back 	 Program	terminated 	 Forward >

Frames

Global	frame

sqrt 	
count_factors 	

result 21

count_factors

n 576
sqrt_n 24.0

k 24
factors 21
Return
value 21

The	total	number	of	times	this	process	executes	the	body	of	the	while	statement	is	the
greatest	integer	less	than	 .	Hence,	we	can	say	that	the	amount	of	time	used	by	this
function,	typically	denoted	 ,	scales	with	the	square	root	of	the	input,	which	we	write
as	 .
For	most	functions,	we	cannot	exactly	determine	the	number	of	steps	or	iterations	they
will	require.	One	convenient	way	to	describe	this	difference	is	to	use	the	notion	of	order
of	growth	to	obtain	a	coarse	measure	of	the	resources	required	by	a	process	as	the
inputs	become	larger.
Let	 	be	a	parameter	that	measures	the	size	of	the	problem	to	be	solved,	and	let	 	be
the	amount	of	resources	the	process	requires	for	a	problem	of	size	 .	In	our	previous
examples	we	took	 	to	be	the	number	for	which	a	given	function	is	to	be	computed,	but
there	are	other	possibilities.	For	instance,	if	our	goal	is	to	compute	an	approximation	to
the	square	root	of	a	number,	we	might	take	 	to	be	the	number	of	digits	of	accuracy
required.	In	general	there	are	a	number	of	properties	of	the	problem	with	respect	to
which	it	will	be	desirable	to	analyze	a	given	process.	Similarly,	 	might	measure	the
amount	of	memory	used,	the	number	of	elementary	machine	operations	performed,	and
so	on.	In	computers	that	do	only	a	fixed	number	of	operations	at	a	time,	the	time
required	to	evaluate	an	expression	will	be	proportional	to	the	number	of	elementary
machine	operations	performed	in	the	process	of	evaluation.
We	say	that	 	has	order	of	growth	 ,	written	 	(pronounced	"theta
of	 "),	if	there	are	positive	constants	 	and	 	independent	of	 	such	that

for	any	sufficiently	large	value	of	 .	In	other	words,	for	large	 ,	the	value	 	is
sandwiched	between	two	values	that	both	scale	with	 :

A	lower	bound	 	and
An	upper	bound	

For	instance,	the	number	of	steps	to	compute	 	grows	proportionally	to	the	input	 .
Thus,	the	steps	required	for	this	process	grows	as	 .	We	also	saw	that	the	space
required	for	the	recursive	implementation	fact	grows	as	 .	By	contrast,	the	iterative

k n k < n‾√ j = n/k j > n‾√

n‾√
R(n)

R(n) = n‾√

n R(n)
n

n

n

R(n)

R(n) Θ(f (n)) R(n) = Θ(f (n))
f (n) k1 k2 n

⋅ f (n) ≤ R(n) ≤ ⋅ f (n)k1 k2

n n R(n)
f (n)

⋅ f (n)k1
⋅ f (n)k2

n! n
Θ(n)

Θ(n)

Objects

func	fib(n)

implementation	fact_iter	takes	a	similar	number	of	steps,	but	the	space	it	requires	stays
constant.	In	this	case,	we	say	that	the	space	grows	as	 .
The	number	of	steps	in	our	tree-recursive	Fibonacci	computation	fib	grows	exponentially
in	its	input	 .	In	particular,	one	can	show	that	the	nth	Fibonacci	number	is	the	closest
integer	to

where	 	is	the	golden	ratio:

We	also	stated	that	the	number	of	steps	scales	with	the	resulting	value,	and	so	the	tree-
recursive	process	requires	 	steps,	a	function	that	grows	exponentially	with	 .
Orders	of	growth	provide	only	a	crude	description	of	the	behavior	of	a	process.	For
example,	a	process	requiring	 	steps	and	a	process	requiring	 	steps	and	a
process	requiring	 	steps	all	have	 	order	of	growth.	There	are
certainly	cases	in	which	an	order	of	growth	analysis	is	too	coarse	a	method	for	deciding
between	two	possible	implementations	of	a	function.
However,	order	of	growth	provides	a	useful	indication	of	how	we	may	expect	the
behavior	of	the	process	to	change	as	we	change	the	size	of	the	problem.	For	a	
(linear)	process,	doubling	the	size	will	roughly	double	the	amount	of	resources	used.	For
an	exponential	process,	each	increment	in	problem	size	will	multiply	the	resource
utilization	by	a	constant	factor.	The	next	example	examines	an	algorithm	whose	order	of
growth	is	logarithmic,	so	that	doubling	the	problem	size	increases	the	resource
requirement	by	only	a	constant	amount.
Space.	To	understand	the	space	requirements	of	a	function,	we	must	specify	generally
how	memory	is	used,	preserved,	and	reclaimed	in	our	environment	model	of
computation.	In	evaluating	an	expression,	we	must	preserve	all	active	environments	and
all	values	and	frames	referenced	by	those	environments.	An	environment	is	active	if	it
provides	the	evaluation	context	for	some	expression	being	evaluated.
For	example,	when	evaluating	fib,	the	interpreter	proceeds	to	compute	each	value	in	the
order	shown	previously,	traversing	the	structure	of	the	tree.	To	do	so,	it	only	needs	to
keep	track	of	those	nodes	that	are	above	the	current	node	in	the	tree	at	any	point	in	the
computation.	The	memory	used	to	evaluate	the	rest	of	the	branches	can	be	reclaimed
because	it	cannot	affect	future	computation.	In	general,	the	space	required	for	tree-
recursive	functions	will	be	proportional	to	the	maximum	depth	of	the	tree.
The	diagram	below	depicts	the	environment	created	by	evaluating	fib(3).	In	the	process
of	evaluating	the	return	expression	for	the	initial	application	of	fib,	the	expression	fib(n-
2)	is	evaluated,	yielding	a	value	of	0.	Once	this	value	is	computed,	the	corresponding
environment	frame	(grayed	out)	is	no	longer	needed:	it	is	not	part	of	an	active
environment.	Thus,	a	well-designed	interpreter	can	reclaim	the	memory	that	was	used	to
store	this	frame.	On	the	other	hand,	if	the	interpreter	is	currently	evaluating	fib(n-1),
then	the	environment	created	by	this	application	of	fib	(in	which	n	is	2)	is	active.	In	turn,
the	environment	originally	created	to	apply	fib	to	3	is	active	because	its	return	value	has
not	yet	been	computed.

1 def	fib(n):
2 				if	n	==	1:
3 								return	0
4 				if	n	==	2:
5 								return	1
6 				return	fib(n-2)	+	fib(n-1)
7
8 result	=	fib(3)

Edit	code	in	Online	Python	Tutor

< Back 	 Step	9	of	13 	 Forward >

Frames

Global	frame

fib 	

fib

n 3

fib

n 1
Return
value 0

fib

n 2

In	the	case	of	memo,	the	environment	associated	with	the	function	it	returns	(which
contains	cache)	must	be	preserved	as	long	as	some	name	is	bound	to	that	function	in	an
active	environment.	The	number	of	entries	in	the	cache	dictionary	grows	linearly	with	the
number	of	unique	arguments	passed	to	fib,	which	scales	linearly	with	the	input.	On	the
other	hand,	the	iterative	implementation	requires	only	two	numbers	to	be	tracked	during
computation:	prev	and	curr,	giving	it	a	constant	size.
Memoization	exemplifies	a	common	pattern	in	programming	that	computation	time	can
often	be	decreased	at	the	expense	of	increased	use	of	space,	or	vis	versa.

2.7.5			Example:	Exponentiation

Θ(1)

n

ϕn−2

5‾√

ϕ

ϕ = ≈ 1.61801 + 5‾√
2

Θ()ϕn n

n2 1000 ⋅ n2

3 ⋅ + 10 ⋅ n + 17n2 Θ()n2

Θ(n)

Consider	the	problem	of	computing	the	exponential	of	a	given	number.	We	would	like	a
function	that	takes	as	arguments	a	base	b	and	a	positive	integer	exponent	n	and
computes	 .	One	way	to	do	this	is	via	the	recursive	definition

which	translates	readily	into	the	recursive	function

>>>	def	exp(b,	n):
								if	n	==	0:
												return	1
								return	b	*	exp(b,	n-1)

This	is	a	linear	recursive	process	that	requires	 	steps	and	 	space.	Just	as	with
factorial,	we	can	readily	formulate	an	equivalent	linear	iteration	that	requires	a	similar
number	of	steps	but	constant	space.

>>>	def	exp_iter(b,	n):
								result	=	1
								for	_	in	range(n):
												result	=	result	*	b
								return	result

We	can	compute	exponentials	in	fewer	steps	by	using	successive	squaring.	For	instance,
rather	than	computing	 	as

we	can	compute	it	using	three	multiplications:

This	method	works	fine	for	exponents	that	are	powers	of	2.	We	can	also	take	advantage
of	successive	squaring	in	computing	exponentials	in	general	if	we	use	the	recursive	rule

We	can	express	this	method	as	a	recursive	function	as	well:

>>>	def	square(x):
								return	x*x

>>>	def	fast_exp(b,	n):
								if	n	==	0:
												return	1
								if	n	%	2	==	0:
												return	square(fast_exp(b,	n//2))
								else:
												return	b	*	fast_exp(b,	n-1)

>>>	fast_exp(2,	100)
1267650600228229401496703205376

The	process	evolved	by	fast_exp	grows	logarithmically	with	n	in	both	space	and	number
of	steps.	To	see	this,	observe	that	computing	 	using	fast_exp	requires	only	one	more
multiplication	than	computing	 .	The	size	of	the	exponent	we	can	compute	therefore
doubles	(approximately)	with	every	new	multiplication	we	are	allowed.	Thus,	the	number
of	multiplications	required	for	an	exponent	of	n	grows	about	as	fast	as	the	logarithm	of	n
base	2.	The	process	has	 	growth.	The	difference	between	 	growth	and	

	growth	becomes	striking	as	 	becomes	large.	For	example,	fast_exp	for	n	of	1000
requires	only	14	multiplications	instead	of	1000.

2.7.6			Sets

In	addition	to	the	list,	tuple,	and	dictionary,	Python	has	a	fourth	built-in	container	type
called	a	set.	Set	literals	follow	the	mathematical	notation	of	elements	enclosed	in	braces.
Duplicate	elements	are	removed	upon	construction.	Sets	are	unordered	collections,	and
so	the	printed	ordering	may	differ	from	the	element	ordering	in	the	set	literal.

>>>	s	=	{3,	2,	1,	4,	4}
>>>	s
{1,	2,	3,	4}

Python	sets	support	a	variety	of	operations,	including	membership	tests,	length
computation,	and	the	standard	set	operations	of	union	and	intersection

>>>	3	in	s
True
>>>	len(s)
4
>>>	s.union({1,	5})
{1,	2,	3,	4,	5}
>>>	s.intersection({6,	5,	4,	3})

bn

bn

b0
= b ⋅ bn−1

= 1

Θ(n) Θ(n)

b8

b ⋅ (b ⋅ (b ⋅ (b ⋅ (b ⋅ (b ⋅ (b ⋅ b))))))

b2

b4

b8

= b ⋅ b
= ⋅b2 b2

= ⋅b4 b4

= {bn (b n1
2)2

b ⋅ bn−1
if	n	is	even
if	n	is	odd

b2n

bn

Θ(log n) Θ(log n)
Θ(n) n

{3,	4}

In	addition	to	union	and	intersection,	Python	sets	support	several	other	methods.	The
predicates	isdisjoint,	issubset,	and	issuperset	provide	set	comparison.	Sets	are	mutable,
and	can	be	changed	one	element	at	a	time	using	add,	remove,	discard,	and	pop.	Additional
methods	provide	multi-element	mutations,	such	as	clear	and	update.	The	Python
documentation	for	sets	should	be	sufficiently	intelligible	at	this	point	of	the	course	to	fill
in	the	details.
Implementing	sets.	Abstractly,	a	set	is	a	collection	of	distinct	objects	that	supports
membership	testing,	union,	intersection,	and	adjunction.	Adjoining	an	element	and	a	set
returns	a	new	set	that	contains	all	of	the	original	set's	elements	along	with	the	new
element,	if	it	is	distinct.	Union	and	intersection	return	the	set	of	elements	that	appear	in
either	or	both	sets,	respectively.	As	with	any	data	abstraction,	we	are	free	to	implement
any	functions	over	any	representation	of	sets	that	provides	this	collection	of	behaviors.
In	the	remainder	of	this	section,	we	consider	three	different	methods	of	implementing
sets	that	vary	in	their	representation.	We	will	characterize	the	efficiency	of	these
different	representations	by	analyzing	the	order	of	growth	of	set	operations.	We	will	use
our	Rlist	and	Tree	classes	from	earlier	in	this	section,	which	allow	for	simple	and	elegant
recursive	solutions	for	elementary	set	operations.
Sets	as	unordered	sequences.	One	way	to	represent	a	set	is	as	a	sequence	in	which
no	element	appears	more	than	once.	The	empty	set	is	represented	by	the	empty
sequence.	Membership	testing	walks	recursively	through	the	list.

>>>	def	empty(s):
								return	s	is	Rlist.empty

>>>	def	set_contains(s,	v):
								"""Return	True	if	and	only	if	set	s	contains	v."""
								if	empty(s):
												return	False
								elif	s.first	==	v:
												return	True
								else:
												return	set_contains(s.rest,	v)

>>>	s	=	Rlist(3,	Rlist(4,	Rlist(5)))
>>>	set_contains(s,	2)
False
>>>	set_contains(s,	5)
True

This	implementation	of	set_contains	requires	 	time	to	test	membership	of	an
element,	where	 	is	the	size	of	the	set	s.	Using	this	linear-time	function	for	membership,
we	can	adjoin	an	element	to	a	set,	also	in	linear	time.

>>>	def	adjoin_set(s,	v):
								"""Return	a	set	containing	all	elements	of	s	and	element	v."""
								if	set_contains(s,	v):
												return	s
								else:
												return	Rlist(v,	s)

>>>	t	=	adjoin_set(s,	2)
>>>	t
Rlist(2,	Rlist(3,	Rlist(4,	Rlist(5))))

In	designing	a	representation,	one	of	the	issues	with	which	we	should	be	concerned	is
efficiency.	Intersecting	two	sets	set1	and	set2	also	requires	membership	testing,	but	this
time	each	element	of	set1	must	be	tested	for	membership	in	set2,	leading	to	a	quadratic
order	of	growth	in	the	number	of	steps,	 ,	for	two	sets	of	size	 .

>>>	def	intersect_set(set1,	set2):
								"""Return	a	set	containing	all	elements	common	to	set1	and	set2."""
								return	filter_rlist(set1,	lambda	v:	set_contains(set2,	v))

>>>	intersect_set(t,	map_rlist(s,	square))
Rlist(4)

When	computing	the	union	of	two	sets,	we	must	be	careful	not	to	include	any	element
twice.	The	union_set	function	also	requires	a	linear	number	of	membership	tests,	creating
a	process	that	also	includes	 	steps.

>>>	def	union_set(set1,	set2):
								"""Return	a	set	containing	all	elements	either	in	set1	or	set2."""
								set1_not_set2	=	filter_rlist(set1,	lambda	v:	not	set_contains(set2,	v))
								return	extend_rlist(set1_not_set2,	set2)

>>>	union_set(t,	s)
Rlist(2,	Rlist(3,	Rlist(4,	Rlist(5))))

Sets	as	ordered	tuples.	One	way	to	speed	up	our	set	operations	is	to	change	the
representation	so	that	the	set	elements	are	listed	in	increasing	order.	To	do	this,	we	need
some	way	to	compare	two	objects	so	that	we	can	say	which	is	bigger.	In	Python,	many
different	types	of	objects	can	be	compared	using	<	and	>	operators,	but	we	will
concentrate	on	numbers	in	this	example.	We	will	represent	a	set	of	numbers	by	listing	its
elements	in	increasing	order.
One	advantage	of	ordering	shows	up	in	set_contains:	In	checking	for	the	presence	of	an

Θ(n)
n

Θ()n2 n

Θ()n2

object,	we	no	longer	have	to	scan	the	entire	set.	If	we	reach	a	set	element	that	is	larger
than	the	item	we	are	looking	for,	then	we	know	that	the	item	is	not	in	the	set:

>>>	def	set_contains(s,	v):
								if	empty(s)	or	s.first	>	v:
												return	False
								elif	s.first	==	v:
												return	True
								else:
												return	set_contains(s.rest,	v)

>>>	set_contains(s,	0)
False

How	many	steps	does	this	save?	In	the	worst	case,	the	item	we	are	looking	for	may	be
the	largest	one	in	the	set,	so	the	number	of	steps	is	the	same	as	for	the	unordered
representation.	On	the	other	hand,	if	we	search	for	items	of	many	different	sizes	we	can
expect	that	sometimes	we	will	be	able	to	stop	searching	at	a	point	near	the	beginning	of
the	list	and	that	other	times	we	will	still	need	to	examine	most	of	the	list.	On	average	we
should	expect	to	have	to	examine	about	half	of	the	items	in	the	set.	Thus,	the	average
number	of	steps	required	will	be	about	 .	This	is	still	 	growth,	but	it	does	save	us,	on
average,	a	factor	of	2	in	the	number	of	steps	over	the	previous	implementation.
We	can	obtain	a	more	impressive	speedup	by	re-implementing	intersect_set.	In	the
unordered	representation,	this	operation	required	 	steps	because	we	performed	a
complete	scan	of	set2	for	each	element	of	set1.	But	with	the	ordered	representation,	we
can	use	a	more	clever	method.	We	iterate	through	both	sets	simultaneously,	tracking	an
element	e1	in	set1	and	e2	in	set2.	When	e1	and	e2	are	equal,	we	include	that	element	in
the	intersection.
Suppose,	however,	that	e1	is	less	than	e2.	Since	e2	is	smaller	than	the	remaining
elements	of	set2,	we	can	immediately	conclude	that	e1	cannot	appear	anywhere	in	the
remainder	of	set2	and	hence	is	not	in	the	intersection.	Thus,	we	no	longer	need	to
consider	e1;	we	discard	it	and	proceed	to	the	next	element	of	set1.	Similar	logic	advances
through	the	elements	of	set2	when	e2	<	e1.	Here	is	the	function:

>>>	def	intersect_set(set1,	set2):
								if	empty(set1)	or	empty(set2):
												return	Rlist.empty
								else:
												e1,	e2	=	set1.first,	set2.first
												if	e1	==	e2:
																return	Rlist(e1,	intersect_set(set1.rest,	set2.rest))
												elif	e1	<	e2:
																return	intersect_set(set1.rest,	set2)
												elif	e2	<	e1:
																return	intersect_set(set1,	set2.rest)

>>>	intersect_set(s,	s.rest)
Rlist(2,	Rlist(3))

To	estimate	the	number	of	steps	required	by	this	process,	observe	that	in	each	step	we
shrink	the	size	of	at	least	one	of	the	sets.	Thus,	the	number	of	steps	required	is	at	most
the	sum	of	the	sizes	of	set1	and	set2,	rather	than	the	product	of	the	sizes,	as	with	the
unordered	representation.	This	is	 	growth	rather	than	 	--	a	considerable
speedup,	even	for	sets	of	moderate	size.	For	example,	the	intersection	of	two	sets	of	size
100	will	take	around	200	steps,	rather	than	10,000	for	the	unordered	representation.
Adjunction	and	union	for	sets	represented	as	ordered	sequences	can	also	be	computed	in
linear	time.	These	implementations	are	left	as	an	exercise.
Sets	as	binary	trees.	We	can	do	better	than	the	ordered-list	representation	by
arranging	the	set	elements	in	the	form	of	a	tree.	We	use	the	Tree	class	introduced
previously.	The	entry	of	the	root	of	the	tree	holds	one	element	of	the	set.	The	entries
within	the	left	branch	include	all	elements	smaller	than	the	one	at	the	root.	Entries	in
the	right	branch	include	all	elements	greater	than	the	one	at	the	root.	The	figure	below
shows	some	trees	that	represent	the	set	{1,	3,	5,	7,	9,	11}.	The	same	set	may	be
represented	by	a	tree	in	a	number	of	different	ways.	The	only	thing	we	require	for	a	valid
representation	is	that	all	elements	in	the	left	subtree	be	smaller	than	the	tree	entry	and
that	all	elements	in	the	right	subtree	be	larger.

The	advantage	of	the	tree	representation	is	this:	Suppose	we	want	to	check	whether	a
value	v	is	contained	in	a	set.	We	begin	by	comparing	v	with	entry.	If	v	is	less	than	this,	we
know	that	we	need	only	search	the	left	subtree;	if	v	is	greater,	we	need	only	search	the
right	subtree.	Now,	if	the	tree	is	"balanced,"	each	of	these	subtrees	will	be	about	half	the
size	of	the	original.	Thus,	in	one	step	we	have	reduced	the	problem	of	searching	a	tree	of
size	 	to	searching	a	tree	of	size	 .	Since	the	size	of	the	tree	is	halved	at	each	step,	we
should	expect	that	the	number	of	steps	needed	to	search	a	tree	grows	as	Theta(log	n).
For	large	sets,	this	will	be	a	significant	speedup	over	the	previous	representations.	This

n
2 Θ(n)

Θ()n2

Θ(n) Θ()n2

n n
2

set_contains	function	exploits	the	ordering	structure	of	the	tree-structured	set.

>>>	def	set_contains(s,	v):
								if	s	is	None:
												return	False
								elif	s.entry	==	v:
												return	True
								elif	s.entry	<	v:
												return	set_contains(s.right,	v)
								elif	s.entry	>	v:
												return	set_contains(s.left,	v)

Adjoining	an	item	to	a	set	is	implemented	similarly	and	also	requires	 	steps.	To
adjoin	a	value	v,	we	compare	v	with	entry	to	determine	whether	v	should	be	added	to	the
right	or	to	the	left	branch,	and	having	adjoined	v	to	the	appropriate	branch	we	piece	this
newly	constructed	branch	together	with	the	original	entry	and	the	other	branch.	If	v	is
equal	to	the	entry,	we	just	return	the	node.	If	we	are	asked	to	adjoin	v	to	an	empty	tree,
we	generate	a	Tree	that	has	v	as	the	entry	and	empty	right	and	left	branches.	Here	is	the
function:

>>>	def	adjoin_set(s,	v):
								if	s	is	None:
												return	Tree(v)
								elif	s.entry	==	v:
												return	s
								elif	s.entry	<	v:
												return	Tree(s.entry,	s.left,	adjoin_set(s.right,	v))
								elif	s.entry	>	v:
												return	Tree(s.entry,	adjoin_set(s.left,	v),	s.right)

>>>	adjoin_set(adjoin_set(adjoin_set(None,	2),	3),	1)
Tree(2,	Tree(1),	Tree(3))

Our	claim	that	searching	the	tree	can	be	performed	in	a	logarithmic	number	of	steps
rests	on	the	assumption	that	the	tree	is	"balanced,"	i.e.,	that	the	left	and	the	right
subtree	of	every	tree	have	approximately	the	same	number	of	elements,	so	that	each
subtree	contains	about	half	the	elements	of	its	parent.	But	how	can	we	be	certain	that
the	trees	we	construct	will	be	balanced?	Even	if	we	start	with	a	balanced	tree,	adding
elements	with	adjoin_set	may	produce	an	unbalanced	result.	Since	the	position	of	a
newly	adjoined	element	depends	on	how	the	element	compares	with	the	items	already	in
the	set,	we	can	expect	that	if	we	add	elements	"randomly"	the	tree	will	tend	to	be
balanced	on	the	average.
But	this	is	not	a	guarantee.	For	example,	if	we	start	with	an	empty	set	and	adjoin	the
numbers	1	through	7	in	sequence	we	end	up	with	a	highly	unbalanced	tree	in	which	all
the	left	subtrees	are	empty,	so	it	has	no	advantage	over	a	simple	ordered	list.	One	way
to	solve	this	problem	is	to	define	an	operation	that	transforms	an	arbitrary	tree	into	a
balanced	tree	with	the	same	elements.	We	can	perform	this	transformation	after	every
few	adjoin_set	operations	to	keep	our	set	in	balance.
Intersection	and	union	operations	can	be	performed	on	tree-structured	sets	in	linear	time
by	converting	them	to	ordered	lists	and	back.	The	details	are	left	as	an	exercise.
Python	set	implementation.	The	set	type	that	is	built	into	Python	does	not	use	any	of
these	representations	internally.	Instead,	Python	uses	a	representation	that	gives
constant-time	membership	tests	and	adjoin	operations	based	on	a	technique	called
hashing,	which	is	a	topic	for	another	course.	Built-in	Python	sets	cannot	contain	mutable
data	types,	such	as	lists,	dictionaries,	or	other	sets.	To	allow	for	nested	sets,	Python	also
includes	a	built-in	immutable	frozenset	class	that	shares	methods	with	the	set	class	but
excludes	mutation	methods	and	operators.
Continue:	2.8	Generic	Operations

Composing	Programs	by	John	DeNero,	based	on	the	textbook	Structure	and	Interpretation	of	Computer	Programs	by	Harold	Abelson	and	Gerald	Jay	Sussman,	is	licensed
under	a	Creative	Commons	Attribution-ShareAlike	3.0	Unported	License.

Θ(log n)

File	failed	to	load:	https://s3.amazonaws.com/saylordotorg-resources/CS/CS102/2.7%20Recursive%20Data%20Structures_files/extensions/jsMath2jax.js

