
PRODUCTS 	SOLUTIONS 	PURCHASE 	SUPPORT 	COMMUNITY 	COMPANY 	OUR	SITES SEARCH

SEARCH	MATHEMATICA	8	DOCUMENTATION

	Documentation 	Neural	Networks 	Neural	Network	Theory	-	A	Short	Tutorial 	Introduction	to	Neural	Networks

2.1	Introduction	to	Neural	Networks
In	the	context	of	this	package,	a	neural	network	is	nothing	more	than	a	function	with	adjustable	or	tunable
parameters.	Let	the	input	to	a	neural	network	be	denoted	by	x,	a	real-valued	(row)	vector	of	arbitrary
dimensionality	or	length.	As	such,	x	is	typically	referred	to	as	input,	input	vector,	regressor	and	sometimes,
pattern	vector.	Typically,	the	length	of	vector	x	is	said	to	be	the	number	of	inputs	to	the	network.	Let	the	network
output	be	denoted	by	 ,	an	approximation	of	the	desired	output	y,	also	a	real-valued	vector	having	one	or	more
components,	and	the	number	of	outputs	from	the	network.	Often	data	sets	contain	many	input-output	pairs.	Then	x
and	y	denote	matrices	with	one	input	and	one	output	vector	on	each	row.

Generally,	a	neural	network	is	a	structure	involving	weighted	interconnections	among	neurons,	or	units,	which	are
most	often	nonlinear	scalar	transformations,	but	which	can	also	be	linear.	Figure	2.1	shows	an	example	of	a	one-
hidden-layer	neural	network	with	three	inputs,	x	=	{ ,	 ,	 }	that,	along	with	a	unity	bias	input,	feed	each	of	the
two	neurons	comprising	the	hidden	layer.	The	two	outputs	from	this	layer	and	a	unity	bias	are	then	fed	into	the
single	output	layer	neuron,	yielding	the	scalar	output,	 .	The	layer	of	neurons	is	called	hidden	since	its	outputs	are
not	directly	seen	in	the	data.	This	particular	type	of	neural	network	is	described	in	detail	in	Section	2.5,
Feedforward	and	Radial	Basis	Function	Networks.	Here,	this	network	will	be	used	to	explain	common	notation	and
nomenclature	used	in	the	package.

Figure	2.1.	A	feedforward	neural	network	with	three	inputs,	two	hidden	neurons,	and	one	output	neuron.

Each	arrow	in	Figure	2.1	corresponds	to	a	real-valued	parameter,	or	a	weight,	of	the	network.	The	values	of	these
parameters	are	tuned	in	the	network	training.

Generally,	a	neuron	is	structured	to	process	multiple	inputs,	including	the	unity	bias,	in	a	nonlinear	way,	producing
a	single	output.	Specifically,	all	inputs	to	a	neuron	are	first	augmented	by	multiplicative	weights.	These	weighted
inputs	are	summed	and	then	transformed	via	a	nonlinear	activation	function,	 .	As	indicated	in	Figure	2.1,	the
neurons	in	the	first	layer	of	the	network	are	nonlinear.	The	single	output	neuron	is	linear,	since	no	activation
function	is	used.	

By	inspection	of	Figure	2.1,	the	output	of	the	network	is	given	by

involving	the	various	parameters	of	the	network,	the	weights	{ , , , }.	The	weights	are	sometimes	referred
to	as	synaptic	strengths.

Eq.	(2.0)	is	a	nonlinear	mapping,	 ,	specifically	representing	the	neural	network	in	Figure	2.1.	In	general,	this
mapping	is	given	in	more	compact	form	by

where	the	 	is	a	real-valued	vector	whose	components	are	the	parameters	of	the	network,	namely,	the	weights.

When	algorithmic	aspects,	independent	of	the	exact	structure	of	the	neural	network,	are	discussed,	then	this

http://reference.wolfram.com/applications/neuralnetworks/NeuralNetworkTheory/2.1.0.html Go NOV OCT MAR

23
2014 2015 2016

8	captures
	 	

	
8	Dec	2010	-	13	Mar	2016 	About	this	capture

Newsletter »

When	algorithmic	aspects,	independent	of	the	exact	structure	of	the	neural	network,	are	discussed,	then	this
compact	form	becomes	more	convenient	to	use	than	an	explicit	one,	such	as	that	of	Eq.	(2.1).

This	package	supports	several	types	of	neural	networks	from	which	a	user	can	choose.	Upon	assigning	design
parameters	to	a	chosen	network,	thus	specifying	its	structure	g(,),	the	user	can	begin	to	train	it.	The	goal	of
training	is	to	find	values	of	the	parameters	 	so	that,	for	any	input	x,	the	network	output	 	is	a	good	approximation
of	the	desired	output	y.	Training	is	carried	out	via	suitable	algorithms	that	tune	the	parameters	 	so	that	input
training	data	map	well	to	corresponding	desired	outputs.	These	algorithms	are	iterative	in	nature,	starting	at	some
initial	value	for	the	parameter	vector	 	and	incrementally	updating	it	to	improve	the	performance	of	the	network.

Before	the	trained	network	is	accepted,	it	should	be	validated.	Roughly,	this	means	running	a	number	of	tests	to
determine	whether	the	network	model	meets	certain	requirements.	Probably	the	simplest	way,	and	often	the	best,
is	to	test	the	neural	network	on	a	data	set	that	was	not	used	for	training,	but	which	was	generated	under	similar
conditions.	Trained	neural	networks	often	fail	this	validation	test,	in	which	case	the	user	will	have	to	choose	a
better	model.	Sometimes,	however,	it	might	be	enough	to	just	repeat	the	training,	starting	from	different	initial
parameters	 .	Once	the	neural	network	is	validated,	it	is	ready	to	be	used	on	new	data.

The	general	purpose	of	the	Neural	Networks	package	can	be	described	to	be	function	approximation.	However,
depending	on	the	origin	of	the	data,	and	the	intended	use	of	the	obtained	neural	network	model,	the	function
approximation	problem	may	be	subdivided	into	several	types	of	problems.	Different	types	of	function
approximation	problems	are	described	in	Section	2.1.1.	Section	1.1,	Features	of	This	Package	includes	a	table
giving	an	overview	of	the	supported	neural	networks	and	the	particular	types	of	problems	they	are	intended	to
address.

©	2015								 About	Wolfram Wolfram	Blog Wolfram|Alpha Terms Privacy Site	Map Contact 	

