
Protection
References:

1.	 Abraham	Silberschatz,	Greg	Gagne,	and	Peter	Baer	Galvin,	"Operating	System	Concepts,	Ninth	Edition	",
Chapter	14

14.1	Goals	of	Protection

Obviously	to	prevent	malicious	misuse	of	the	system	by	users	or	programs.	See	chapter	15	for	a	more
thorough	coverage	of	this	goal.
To	ensure	that	each	shared	resource	is	used	only	in	accordance	with	system	policies,	which	may	be	set	either
by	system	designers	or	by	system	administrators.
To	ensure	that	errant	programs	cause	the	minimal	amount	of	damage	possible.
Note	that	protection	systems	only	provide	the	mechanisms	for	enforcing	policies	and	ensuring	reliable
systems.	It	is	up	to	administrators	and	users	to	implement	those	mechanisms	effectively.

14.2	Principles	of	Protection

The	principle	of	least	privilege	dictates	that	programs,	users,	and	systems	be	given	just	enough	privileges
to	perform	their	tasks.
This	ensures	that	failures	do	the	least	amount	of	harm	and	allow	the	least	of	harm	to	be	done.
For	example,	if	a	program	needs	special	privileges	to	perform	a	task,	it	is	better	to	make	it	a	SGID	program
with	group	ownership	of	"network"	or	"backup"	or	some	other	pseudo	group,	rather	than	SUID	with	root
ownership.	This	limits	the	amount	of	damage	that	can	occur	if	something	goes	wrong.
Typically	each	user	is	given	their	own	account,	and	has	only	enough	privilege	to	modify	their	own	files.
The	root	account	should	not	be	used	for	normal	day	to	day	activities	-	The	System	Administrator	should	also
have	an	ordinary	account,	and	reserve	use	of	the	root	account	for	only	those	tasks	which	need	the	root
privileges

14.3	Domain	of	Protection

A	computer	can	be	viewed	as	a	collection	of	processes	and	objects	(	both	HW	&	SW	).
The	need	to	know	principle	states	that	a	process	should	only	have	access	to	those	objects	it	needs	to
accomplish	its	task,	and	furthermore	only	in	the	modes	for	which	it	needs	access	and	only	during	the	time
frame	when	it	needs	access.
The	modes	available	for	a	particular	object	may	depend	upon	its	type.

14.3.1	Domain	Structure

A	protection	domain	specifies	the	resources	that	a	process	may	access.
Each	domain	defines	a	set	of	objects	and	the	types	of	operations	that	may	be	invoked	on	each
object.
An	access	right	is	the	ability	to	execute	an	operation	on	an	object.
A	domain	is	defined	as	a	set	of	<	object,	{	access	right	set	}	>	pairs,	as	shown	below.	Note	that
some	domains	may	be	disjoint	while	others	overlap.

Figure	14.1	-	System	with	three	protection	domains.

The	association	between	a	process	and	a	domain	may	be	static	or	dynamic.
If	the	association	is	static,	then	the	need-to-know	principle	requires	a	way	of	changing	the
contents	of	the	domain	dynamically.
If	the	association	is	dynamic,	then	there	needs	to	be	a	mechanism	for	domain	switching.

Domains	may	be	realized	in	different	fashions	-	as	users,	or	as	processes,	or	as	procedures.	E.g.	if
each	user	corresponds	to	a	domain,	then	that	domain	defines	the	access	of	that	user,	and	changing
domains	involves	changing	user	ID.

14.3.2	An	Example:	UNIX

UNIX	associates	domains	with	users.



Certain	programs	operate	with	the	SUID	bit	set,	which	effectively	changes	the	user	ID,	and
therefore	the	access	domain,	while	the	program	is	running.	(	and	similarly	for	the	SGID	bit.	)
Unfortunately	this	has	some	potential	for	abuse.
An	alternative	used	on	some	systems	is	to	place	privileged	programs	in	special	directories,	so	that
they	attain	the	identity	of	the	directory	owner	when	they	run.	This	prevents	crackers	from	placing
SUID	programs	in	random	directories	around	the	system.
Yet	another	alternative	is	to	not	allow	the	changing	of	ID	at	all.	Instead,	special	privileged	daemons
are	launched	at	boot	time,	and	user	processes	send	messages	to	these	daemons	when	they	need
special	tasks	performed.

14.3.3	An	Example:	MULTICS

The	MULTICS	system	uses	a	complex	system	of	rings,	each	corresponding	to	a	different	protection
domain,	as	shown	below:

Figure	14.2	-	MULTICS	ring	structure.

Rings	are	numbered	from	0	to	7,	with	outer	rings	having	a	subset	of	the	privileges	of	the	inner
rings.
Each	file	is	a	memory	segment,	and	each	segment	description	includes	an	entry	that	indicates	the
ring	number	associated	with	that	segment,	as	well	as	read,	write,	and	execute	privileges.
Each	process	runs	in	a	ring,	according	to	the	current-ring-number,	a	counter	associated	with	each
process.
A	process	operating	in	one	ring	can	only	access	segments	associated	with	higher	(	farther	out	)
rings,	and	then	only	according	to	the	access	bits.	Processes	cannot	access	segments	associated	with
lower	rings.
Domain	switching	is	achieved	by	a	process	in	one	ring	calling	upon	a	process	operating	in	a	lower
ring,	which	is	controlled	by	several	factors	stored	with	each	segment	descriptor:

An	access	bracket,	defined	by	integers	b1	<=	b2.
A	limit	b3	>	b2
A	list	of	gates,	identifying	the	entry	points	at	which	the	segments	may	be	called.

If	a	process	operating	in	ring	i	calls	a	segment	whose	bracket	is	such	that	b1	<=	i	<=	b2,	then	the
call	succeeds	and	the	process	remains	in	ring	i.
Otherwise	a	trap	to	the	OS	occurs,	and	is	handled	as	follows:

If	i	<	b1,	then	the	call	is	allowed,	because	we	are	transferring	to	a	procedure	with	fewer
privileges.	However	if	any	of	the	parameters	being	passed	are	of	segments	below	b1,	then	they
must	be	copied	to	an	area	accessible	by	the	called	procedure.
If	i	>	b2,	then	the	call	is	allowed	only	if	i	<=	b3	and	the	call	is	directed	to	one	of	the	entries	on
the	list	of	gates.

Overall	this	approach	is	more	complex	and	less	efficient	than	other	protection	schemes.

14.4	Access	Matrix

The	model	of	protection	that	we	have	been	discussing	can	be	viewed	as	an	access	matrix,	in	which	columns
represent	different	system	resources	and	rows	represent	different	protection	domains.	Entries	within	the
matrix	indicate	what	access	that	domain	has	to	that	resource.



Figure	14.3	-	Access	matrix.

Domain	switching	can	be	easily	supported	under	this	model,	simply	by	providing	"switch"	access	to	other
domains:

Figure	14.4	-	Access	matrix	of	Figure	14.3	with	domains	as	objects.

The	ability	to	copy	rights	is	denoted	by	an	asterisk,	indicating	that	processes	in	that	domain	have	the	right	to
copy	that	access	within	the	same	column,	i.e.	for	the	same	object.	There	are	two	important	variations:

If	the	asterisk	is	removed	from	the	original	access	right,	then	the	right	is	transferred,	rather	than	being
copied.	This	may	be	termed	a	transfer	right	as	opposed	to	a	copy	right.
If	only	the	right	and	not	the	asterisk	is	copied,	then	the	access	right	is	added	to	the	new	domain,	but	it
may	not	be	propagated	further.	That	is	the	new	domain	does	not	also	receive	the	right	to	copy	the	access.
This	may	be	termed	a	limited	copy	right,	as	shown	in	Figure	14.5	below:

Figure	14.5	-	Access	matrix	with	copy	rights.



The	owner	right	adds	the	privilege	of	adding	new	rights	or	removing	existing	ones:

Figure	14.6	-	Access	matrix	with	owner	rights.

Copy	and	owner	rights	only	allow	the	modification	of	rights	within	a	column.	The	addition	of	control	rights,
which	only	apply	to	domain	objects,	allow	a	process	operating	in	one	domain	to	affect	the	rights	available	in
other	domains.	For	example	in	the	table	below,	a	process	operating	in	domain	D2	has	the	right	to	control	any
of	the	rights	in	domain	D4.

Figure	14.7	-	Modified	access	matrix	of	Figure	14.4

14.5	Implementation	of	Access	Matrix

14.5.1	Global	Table

The	simplest	approach	is	one	big	global	table	with	<	domain,	object,	rights	>	entries.
Unfortunately	this	table	is	very	large	(	even	if	sparse	)	and	so	cannot	be	kept	in	memory	(	without
invoking	virtual	memory	techniques.	)
There	is	also	no	good	way	to	specify	groupings	-	If	everyone	has	access	to	some	resource,	then	it
still	needs	a	separate	entry	for	every	domain.

14.5.2	Access	Lists	for	Objects

Each	column	of	the	table	can	be	kept	as	a	list	of	the	access	rights	for	that	particular	object,
discarding	blank	entries.



For	efficiency	a	separate	list	of	default	access	rights	can	also	be	kept,	and	checked	first.

14.5.3	Capability	Lists	for	Domains

In	a	similar	fashion,	each	row	of	the	table	can	be	kept	as	a	list	of	the	capabilities	of	that	domain.
Capability	lists	are	associated	with	each	domain,	but	not	directly	accessible	by	the	domain	or	any
user	process.
Capability	lists	are	themselves	protected	resources,	distinguished	from	other	data	in	one	of	two
ways:

A	tag,	possibly	hardware	implemented,	distinguishing	this	special	type	of	data.	(	other	types
may	be	floats,	pointers,	booleans,	etc.	)
The	address	space	for	a	program	may	be	split	into	multiple	segments,	at	least	one	of	which	is
inaccessible	by	the	program	itself,	and	used	by	the	operating	system	for	maintaining	the
process's	access	right	capability	list.

14.5.4	A	Lock-Key	Mechanism

Each	resource	has	a	list	of	unique	bit	patterns,	termed	locks.
Each	domain	has	its	own	list	of	unique	bit	patterns,	termed	keys.
Access	is	granted	if	one	of	the	domain's	keys	fits	one	of	the	resource's	locks.
Again,	a	process	is	not	allowed	to	modify	its	own	keys.

14.5.5	Comparison

Each	of	the	methods	here	has	certain	advantages	or	disadvantages,	depending	on	the	particular
situation	and	task	at	hand.
Many	systems	employ	some	combination	of	the	listed	methods.

14.6	Access	Control

Role-Based	Access	Control,	RBAC,	assigns	privileges	to	users,	programs,	or	roles	as	appropriate,	where
"privileges"	refer	to	the	right	to	call	certain	system	calls,	or	to	use	certain	parameters	with	those	calls.
RBAC	supports	the	principle	of	least	privilege,	and	reduces	the	susceptibility	to	abuse	as	opposed	to	SUID	or
SGID	programs.

Figure	14.8	-	Role-based	access	control	in	Solaris	10.

14.7	Revocation	of	Access	Rights

The	need	to	revoke	access	rights	dynamically	raises	several	questions:
Immediate	versus	delayed	-	If	delayed,	can	we	determine	when	the	revocation	will	take	place?
Selective	versus	general	-	Does	revocation	of	an	access	right	to	an	object	affect	all	users	who	have	that
right,	or	only	some	users?
Partial	versus	total	-	Can	a	subset	of	rights	for	an	object	be	revoked,	or	are	all	rights	revoked	at	once?
Temporary	versus	permanent	-	If	rights	are	revoked,	is	there	a	mechanism	for	processes	to	re-acquire
some	or	all	of	the	revoked	rights?

With	an	access	list	scheme	revocation	is	easy,	immediate,	and	can	be	selective,	general,	partial,	total,
temporary,	or	permanent,	as	desired.



With	capabilities	lists	the	problem	is	more	complicated,	because	access	rights	are	distributed	throughout	the
system.	A	few	schemes	that	have	been	developed	include:

Reacquisition	-	Capabilities	are	periodically	revoked	from	each	domain,	which	must	then	re-acquire
them.
Back-pointers	-	A	list	of	pointers	is	maintained	from	each	object	to	each	capability	which	is	held	for	that
object.
Indirection	-	Capabilities	point	to	an	entry	in	a	global	table	rather	than	to	the	object.	Access	rights	can	be
revoked	by	changing	or	invalidating	the	table	entry,	which	may	affect	multiple	processes,	which	must
then	re-acquire	access	rights	to	continue.
Keys	-	A	unique	bit	pattern	is	associated	with	each	capability	when	created,	which	can	be	neither
inspected	nor	modified	by	the	process.

A	master	key	is	associated	with	each	object.
When	a	capability	is	created,	its	key	is	set	to	the	object's	master	key.
As	long	as	the	capability's	key	matches	the	object's	key,	then	the	capabilities	remain	valid.
The	object	master	key	can	be	changed	with	the	set-key	command,	thereby	invalidating	all	current
capabilities.
More	flexibility	can	be	added	to	this	scheme	by	implementing	a	list	of	keys	for	each	object,	possibly
in	a	global	table.

14.8	Capability-Based	Systems	(	Optional	)

14.8.1	An	Example:	Hydra

Hydra	is	a	capability-based	system	that	includes	both	system-defined	rights	and	user-defined
rights.	The	interpretation	of	user-defined	rights	is	up	to	the	specific	user	programs,	but	the	OS
provides	support	for	protecting	access	to	those	rights,	whatever	they	may	be
Operations	on	objects	are	defined	procedurally,	and	those	procedures	are	themselves	protected
objects,	accessed	indirectly	through	capabilities.
The	names	of	user-defined	procedures	must	be	identified	to	the	protection	system	if	it	is	to	deal	with
user-defined	rights.
When	an	object	is	created,	the	names	of	operations	defined	on	that	object	become	auxiliary	rights,
described	in	a	capability	for	an	instance	of	the	type.	For	a	process	to	act	on	an	object,	the
capabilities	it	holds	for	that	object	must	contain	the	name	of	the	operation	being	invoked.	This
allows	access	to	be	controlled	on	an	instance-by-instance	and	process-by-process	basis.
Hydra	also	allows	rights	amplification,	in	which	a	process	is	deemed	to	be	trustworthy,	and
thereby	allowed	to	act	on	any	object	corresponding	to	its	parameters.
Programmers	can	make	direct	use	of	the	Hydra	protection	system,	using	suitable	libraries	which	are
documented	in	appropriate	reference	manuals.

14.8.2	An	Example:	Cambridge	CAP	System

The	CAP	system	has	two	kinds	of	capabilities:
Data	capability,	used	to	provide	read,	write,	and	execute	access	to	objects.	These	capabilities
are	interpreted	by	microcode	in	the	CAP	machine.
Software	capability,	is	protected	but	not	interpreted	by	the	CAP	microcode.

Software	capabilities	are	interpreted	by	protected	(	privileged	)	procedures,	possibly
written	by	application	programmers.
When	a	process	executes	a	protected	procedure,	it	temporarily	gains	the	ability	to	read	or
write	the	contents	of	a	software	capability.
This	leaves	the	interpretation	of	the	software	capabilities	up	to	the	individual	subsystems,
and	limits	the	potential	damage	that	could	be	caused	by	a	faulty	privileged	procedure.
Note,	however,	that	protected	procedures	only	get	access	to	software	capabilities	for	the
subsystem	of	which	they	are	a	part.	Checks	are	made	when	passing	software	capabilities
to	protected	procedures	that	they	are	of	the	correct	type.
Unfortunately	the	CAP	system	does	not	provide	libraries,	making	it	harder	for	an
individual	programmer	to	use	than	the	Hydra	system.

14.9	Language-Based	Protection	(	Optional	)

As	systems	have	developed,	protection	systems	have	become	more	powerful,	and	also	more	specific	and
specialized.
To	refine	protection	even	further	requires	putting	protection	capabilities	into	the	hands	of	individual
programmers,	so	that	protection	policies	can	be	implemented	on	the	application	level,	i.e.	to	protect
resources	in	ways	that	are	known	to	the	specific	applications	but	not	to	the	more	general	operating
system.

14.9.1	Compiler-Based	Enforcement

In	a	compiler-based	approach	to	protection	enforcement,	programmers	directly	specify	the
protection	needed	for	different	resources	at	the	time	the	resources	are	declared.
This	approach	has	several	advantages:



1.	 Protection	needs	are	simply	declared,	as	opposed	to	a	complex	series	of	procedure	calls.
2.	 Protection	requirements	can	be	stated	independently	of	the	support	provided	by	a	particular
OS.

3.	 The	means	of	enforcement	need	not	be	provided	directly	by	the	developer.
4.	 Declarative	notation	is	natural,	because	access	privileges	are	closely	related	to	the	concept	of
data	types.

Regardless	of	the	means	of	implementation,	compiler-based	protection	relies	upon	the	underlying
protection	mechanisms	provided	by	the	underlying	OS,	such	as	the	Cambridge	CAP	or	Hydra
systems.
Even	if	the	underlying	OS	does	not	provide	advanced	protection	mechanisms,	the	compiler	can	still
offer	some	protection,	such	as	treating	memory	accesses	differently	in	code	versus	data	segments.	(
E.g.	code	segments	cant	be	modified,	data	segments	can't	be	executed.	)
There	are	several	areas	in	which	compiler-based	protection	can	be	compared	to	kernel-enforced
protection:

Security.	Security	provided	by	the	kernel	offers	better	protection	than	that	provided	by	a
compiler.	The	security	of	the	compiler-based	enforcement	is	dependent	upon	the	integrity	of
the	compiler	itself,	as	well	as	requiring	that	files	not	be	modified	after	they	are	compiled.	The
kernel	is	in	a	better	position	to	protect	itself	from	modification,	as	well	as	protecting	access	to
specific	files.	Where	hardware	support	of	individual	memory	accesses	is	available,	the
protection	is	stronger	still.
Flexibility.	A	kernel-based	protection	system	is	not	as	flexible	to	provide	the	specific
protection	needed	by	an	individual	programmer,	though	it	may	provide	support	which	the
programmer	may	make	use	of.	Compilers	are	more	easily	changed	and	updated	when
necessary	to	change	the	protection	services	offered	or	their	implementation.
Efficiency.	The	most	efficient	protection	mechanism	is	one	supported	by	hardware	and
microcode.	Insofar	as	software	based	protection	is	concerned,	compiler-based	systems	have	the
advantage	that	many	checks	can	be	made	off-line,	at	compile	time,	rather	that	during
execution.

The	concept	of	incorporating	protection	mechanisms	into	programming	languages	is	in	its	infancy,
and	still	remains	to	be	fully	developed.	However	the	general	goal	is	to	provide	mechanisms	for	three
functions:
1.	 Distributing	capabilities	safely	and	efficiently	among	customer	processes.	In	particular	a	user
process	should	only	be	able	to	access	resources	for	which	it	was	issued	capabilities.

2.	 Specifying	the	type	of	operations	a	process	may	execute	on	a	resource,	such	as	reading	or
writing.

3.	 Specifying	the	order	in	which	operations	are	performed	on	the	resource,	such	as	opening
before	reading.

14.9.2	Protection	in	Java

Java	was	designed	from	the	very	beginning	to	operate	in	a	distributed	environment,	where	code
would	be	executed	from	a	variety	of	trusted	and	untrusted	sources.	As	a	result	the	Java	Virtual
Machine,	JVM	incorporates	many	protection	mechanisms
When	a	Java	program	runs,	it	load	up	classes	dynamically,	in	response	to	requests	to	instantiates
objects	of	particular	types.	These	classes	may	come	from	a	variety	of	different	sources,	some	trusted
and	some	not,	which	requires	that	the	protection	mechanism	be	implemented	at	the	resolution	of
individual	classes,	something	not	supported	by	the	basic	operating	system.
As	each	class	is	loaded,	it	is	placed	into	a	separate	protection	domain.	The	capabilities	of	each
domain	depend	upon	whether	the	source	URL	is	trusted	or	not,	the	presence	or	absence	of	any
digital	signatures	on	the	class	(	Chapter	15	),	and	a	configurable	policy	file	indicating	which	servers
a	particular	user	trusts,	etc.
When	a	request	is	made	to	access	a	restricted	resource	in	Java,	(	e.g.	open	a	local	file	),	some
process	on	the	current	call	stack	must	specifically	assert	a	privilege	to	perform	the	operation.	In
essence	this	method	assumes	responsibility	for	the	restricted	access.	Naturally	the	method	must
be	part	of	a	class	which	resides	in	a	protection	domain	that	includes	the	capability	for	the	requested
operation.	This	approach	is	termed	stack	inspection,	and	works	like	this:

When	a	caller	may	not	be	trusted,	a	method	executes	an	access	request	within	a
doPrivileged(	)	block,	which	is	noted	on	the	calling	stack.
When	access	to	a	protected	resource	is	requested,	checkPermissions(	)	inspects	the	call
stack	to	see	if	a	method	has	asserted	the	privilege	to	access	the	protected	resource.

If	a	suitable	doPriveleged	block	is	encountered	on	the	stack	before	a	domain	in	which	the
privilege	is	disallowed,	then	the	request	is	granted.
If	a	domain	in	which	the	request	is	disallowed	is	encountered	first,	then	the	access	is
denied	and	a	AccessControlException	is	thrown.
If	neither	is	encountered,	then	the	response	is	implementation	dependent.

In	the	example	below	the	untrusted	applet's	call	to	get(	)	succeeds,	because	the	trusted	URL
loader	asserts	the	privilege	of	opening	the	specific	URL	lucent.com.	However	when	the	applet	tries
to	make	a	direct	call	to	open(	)	it	fails,	because	it	does	not	have	privilege	to	access	any	sockets.



Figure	14.9	-	Stack	inspection.

14.10	Summary

	


