
UP	|	HOME

10.	Input	and	Output

Table	of	Contents
Command-line	arguments
I/O	Streams

Character	I/O:	getchar()	and	putchar()
Formatted	I/O:	printf()	and	scanf()

The	printf()	function
The	scanf()	function

Input	and	Output	with	Files
Opening	and	Closing	files	with	fopen()	and	fclose()
Reading	and	Writing	to	files

Ascii	Files	(plain	text)
Binary	Files	(raw	bytes)

Links
Exercises

Solutions

Command-line	arguments
When	you	run	a	C	program	from	the	command	line,	you	can	pass	it	input	arguments.

I/O	Streams
The	standard	C	library	(linked	to	using	#include	<stdio.h>)	includes	a	handful	of	functions	for	performing	input	and
output	in	C.

C	and	UNIX	make	use	of	a	concept	called	streams	in	which	data	can	be	sent	and	received	between	programs,	devices,
and	the	operating	system.	We	can	distinguish	between	two	types	of	streams:	text	and	binary.

Text	streams	are	made	up	of	lines,	where	each	line	has	zero	or	more	characters,	and	is	terminated	by	a	new-line
character	\n.	Binary	streams	are	more	"raw"	and	consist	of	a	stream	of	any	number	of	bytes.

C	programs	all	have	three	streams	"built-in":	standard	input,	standard	output,	and	standard	error.	When	you
interact	with	a	C	program	in	a	terminal,	and	you	type	values	in,	you	are	using	standard	input.

UNIX	has	a	concept	called	pipes	(e.g.	see	here)	whereby	you	can	redirect	any	stream	(e.g.	output	from	some	program
or	device)	as	input	to	another	process	(e.g.	your	program).	When	you	redirect	a	stream	to	your	program,	which	takes	it
in	as	input,	you	are	using	the	standard	input	stream.

When	your	program	uses	printf()	(see	below)	to	print	to	the	screen,	you	are	using	standard	output.

Files	(e.g.	data	files)	are	also	associated	with	streams,	and	we	will	see	below	how	to	read	from	them	and	write	to	them.

We	won't	talk	about	standard	error	here.	Refer	to	a	UNIX	reference,	a	C	book,	or	Streams	and	Files	for	more	details.

Character	I/O:	getchar()	and	putchar()

When	you	want	to	read	data	a	single	character	at	a	time,	you	can	use	getchar().	The	output	function	putchar()	will
write	out	one	character	at	a	time	to	standard	output.

x
x

Formatted	I/O:	printf()	and	scanf()

The	printf()	function

We	have	seen	in	many	of	the	example	code	snippets,	the	use	of	the	printf()	function	to	write	formatted	output	to	the
screen.	In	general	the	printf()	function	takes	two	arguments:	first,	a	string	argument	that	indicates	what	to	write	to
the	screen,	including	formats,	and	second,	a	list	of	variables	that	provide	the	data	to	the	various	elements	in	the

#include	<stdio.h>

int	main()	{
		char	c	=	getchar();
		putchar(c);
		putchar('\n');
		return	0;
}

http://gribblelab.org/CBootcamp/10_Input_and_Output.html Go APR MAY JUL

05
2015 2016 2017

46	captures
	 	
	

� ⍰❎
f �

2	Oct	2012	-	8	Nov	2017 ▾	About	this	capture



formatting	string.

Here	is	an	example	where	we	print	a	sentence	that	contains	a	formatted	integer,	a	floating-point	number,	and	a	string:

pi	is	about			3.14159265	and	the	meaning	of	life	is	42

Let's	unpack	the	printf()	statement	above	on	line	7.	The	format	string	includes	three	numeric	format	codes.	The	first,
%12.8f,	says	that	we	want	to	print	a	floating-point	number	(f),	we	want	to	print	it	to	8	decimal	places	(.8),	and	we	want
to	provide	12	columns	of	space	for	it	(12).	The	second	format	argument	is	%s	which	corresponds	to	a	string.	The	third
format	argument	is	%d	which	corresponds	to	an	integer.

Consult	a	reference	manual	(or	a	website	like	this	for	full	details).

The	scanf()	function

To	read	formatted	data	in	from	standard	input	we	can	use	the	fscanf()	function.	Just	like	printf(),	it	takes	as	a	first
argument	a	format	string,	followed	by	other	arguments	specifying	the	destination	of	each	argument.	Unlike	printf(),
the	scanf()	function	requires	that	these	destination	arguments	be	addresses	of	the	relevant	locations	in	memory	(we
can	feed	it	a	pointer,	for	example).

Here	is	a	simple	example	in	which	we	read	from	standard	input	a	date,	which	we	expect	to	be	in	the	following	format:

25	Dec	2012

25	Dec	2012
the	date	is	Dec	25,	2012

Note	how	on	line	6,	we	pass	the	address	of	day	and	year	using	the	ampersand	(&)	operator.	On	line	4	we	declare	day
and	year	as	int.	Using	the	ampersand	notation,	we	can	write	&day	and	&year,	which	correspond	to	pointers	to	the
address	of	day	and	year.

The	scanf()	function	ignores	blanks	and	tabs	in	the	format	string,	and	it	skips	over	white	space	(blanks,	tabs,	newlines,
etc)	as	it	looks	for	input	values.

Input	and	Output	with	Files
Opening	and	Closing	files	with	fopen()	and	fclose()

Before	a	file	can	be	read	or	written	to,	it	has	to	be	opened	using	the	fopen()	function,	which	takes	as	arguments	a
string	corresponding	to	the	filename,	and	a	second	argument	(also	a	string)	corresponding	to	the	mode.	The	mode	is
read	("r"),	write	("w")	or	append	("a").	The	fopen()	function	then	returns	a	pointer	to	the	(open)	file.	After	reading
and/or	writing	to	your	file,	you	will	need	to	close	it	using	the	fclose()	function.

Reading	and	Writing	to	files

There	are	many	functions	in	stdio.h	for	reading	from	and	writing	to	files.	There	is	a	collection	of	functions	for	reading
and	writing	ascii	(text)	data,	and	there	are	functions	for	dealing	with	binary	data.

Ascii	Files	(plain	text)

There	are	functions	to	read	single	characters	at	a	time	(getc()	and	putc()),	there	are	functions	to	read	and	write
formatted	output	(fscanf()	and	fprintf()),	and	there	are	functions	to	read	and	write	single	lines	at	a	time	(fgets()
and	fputs()).

Here	is	an	example	program	that	outputs	a	table	of	temperature	values	in	Fahrenheit	and	Celsius	to	an	ascii	file.

#include	<stdio.h>

int	main()	{
		int	i	=	42;
		char	str[]	=	"the	meaning	of	life";
		double	p	=	3.14159265;
		printf("pi	is	about	%12.8f	and	%s	is	%d\n",	p,	str,	i);
}

#include	<stdio.h>

int	main()	{
		int	day,	year;
		char	monthname[20];
		scanf("%d	%s	%d",	&day,	monthname,	&year);
		printf("the	date	is	%s	%d,	%d\n",	monthname,	day,	year);
		return	0;
}



plg@wildebeest:~/Desktop$	more	outfile.txt	
			Celsius	Fahrenheit
				-10.00						14.00
					-8.00						17.60
					-6.00						21.20
					-4.00						24.80
					-2.00						28.40
						0.00						32.00
						2.00						35.60
						4.00						39.20
						6.00						42.80
						8.00						46.40
					10.00						50.00

A	couple	of	things	are	worth	noting	about	the	code	above.	On	line	13,	we	check	the	value	of	the	file	pointer	fp,	and	if	it
is	equal	to	NULL	(which	means	there	was	an	error	opening	the	file),	we	write	a	message	to	the	screen	and	we	return	1
(which	exits	the	main()	function	and	thus	exits	our	program).	A	convention	in	UNIX	is	that	programs	which	execute
successfully	return	0	and	non-zero	values	are	returned	when	there	was	an	error	encountered.

On	lines	19	and	22	we	use	the	fprintf()	function	to	write	to	the	file.	This	is	just	like	the	printf()	function	that	we
have	seen	before,	to	write	formatted	output	to	standard	output.	This	time	we're	writing	to	a	file	instead.

To	illustrate	reading	from	ascii	files,	here's	an	example	program	that	will	read	in	the	file	produced	by	the	previous	code
example,	and	do	some	arithmetic	on	them.

#include	<stdio.h>

int	main(int	argc,	char	*argv[])	{

		FILE	*fp;
		double	tmpC[11]	=	{-10.0,	-8.0,	-6.0,
																						-4.0,	-2.0,		0.0,		2.0,
																							4.0,		6.0,		8.0,	10.0};
		double	tmpF;
		int	i;

		fp	=	fopen("outfile.txt",	"w");
		if	(fp	==	NULL)	{
				printf("sorry	can't	open	outfile.txt\n");
				return	1;
		}
		else	{
				//	print	a	table	header
				fprintf(fp,	"%10s	%10s\n",	"Celsius",	"Fahrenheit");
				for	(i=0;	i<11;	i++)	{
						tmpF	=	((tmpC[i]	*	(9.0/5.0))	+	32.0);
						fprintf(fp,	"%10.2f	%10.2f\n",	tmpC[i],	tmpF);
				}
				fclose(fp);
		}

		return	0;
}

#include	<stdio.h>

int	main(int	argc,	char	*argv[])	{

		FILE	*fp;
		char	buffer[256];
		double	tempC,	tempF;
		double	sumC	=	0.0;
		double	sumF	=	0.0;
		int	numread	=	0;

		fp	=	fopen("outfile.txt",	"r");
		if	(fp	==	NULL)	{
				printf("there	was	an	error	opening	outfile.txt\n");
				return	1;
		}
		else	{
				//	read	in	the	header	line	first
				fgets(buffer,	256,	fp);
				while	(!feof(fp))	{
						fscanf(fp,	"%lf	%lf\n",	&tempC,	&tempF);
						printf("tempC=%.2f,	tempF=%.2f\n",	tempC,	tempF);
						sumC	+=	tempC;
						sumF	+=	tempF;
						numread++;
				}
				fclose(fp);



tempC=-10.00,	tempF=14.00
tempC=-8.00,	tempF=17.60
tempC=-6.00,	tempF=21.20
tempC=-4.00,	tempF=24.80
tempC=-2.00,	tempF=28.40
tempC=0.00,	tempF=32.00
tempC=2.00,	tempF=35.60
tempC=4.00,	tempF=39.20
tempC=6.00,	tempF=42.80
tempC=8.00,	tempF=46.40
tempC=10.00,	tempF=50.00
11	values	read,	sumC=0.00	and	sumF=352.00

Some	comments	about	the	above	code	example:	on	line	19	we	use	the	fgets()	function	to	read	in	the	first	line	of	the
file	to	a	character	string	(buffer)	that	we	declared	above.	The	fgets()	function	requires	as	its	second	argument	the
maximum	number	of	characters	to	read.	Since	we	know	we	don't	expect	many	here,	we	indicate	a	maximum	of	256.
After	reading	in	the	first	line,	we	now	enter	a	while	loop,	using	fscanf()	to	read	in	each	pair	of	floating-point	values.
The	while	loop	terminates	when	!feof(fp)	is	false.	The	feof()	function	returns	TRUE	if	we	are	at	the	end	of	the	file,
and	FALSE	otherwise.

Binary	Files	(raw	bytes)

There	are	many	circumstances	in	which	you	may	want	to	read	from	and	write	to	binary	files.	Binary	files	are	not	plain
text	(ascii)	files	where	each	chunk	of	bytes	represents	an	ascii	character.	In	binary	files,	you	store	raw	bytes,	in
whatever	format	you	want.	For	example	Optotrak	stores	its	data	files	as	binary	files:	a	header	of	a	given	length	(number
of	bytes)	followed	by	data,	in	a	specific	byte	format.

Advantages	of	binary	files	over	ascii	files	is	that	they	are	typically	smaller	in	size,	and	they	can	be	read	from	and	written
to	faster	(no	need	to	convert	between	raw	bytes	and	ascii	characters).	Disadvantages	of	binary	files	are	that	they	are
not	human	readable	(you	can't	open	in	them	in	a	text	editor	and	"look"	at	them).

The	fread()	and	fwrite()	functions	are	used	to	read	and	write	binary	data	(raw	bytes)	from	and	to	binary	files.	Here	is
an	example	of	writing	some	data	to	a	binary	file.	We	first	write	a	16	byte	header	containing	the	date	(4	+	4	+	4	=	12
bytes)	and	the	number	of	data	points	(4	bytes).	We	then	write	out	the	data	array,	4	bytes	per	element.	In	this	example
the	data	are	integer	values.

Here	is	an	example	program	to	read	from	the	binary	data	file:

				printf("%d	values	read,	sumC=%.2f	and	sumF=%.2f\n",	numread,	sumC,	sumF);
		}

		return	0;
}

#include	<stdio.h>

int	main(int	argc,	char	*argv[])	{

		FILE	*fp;
		int	year	=	2012;
		int	month	=	8;
		int	day	=	26;
		int	mydata[5]	=	{2,	4,	6,	8,	10};

		fp	=	fopen("data.bin",	"w");
		if	(fp	==	NULL)	{
				printf("error	opening	data.bin\n");
				return	1;
		}
		else	{
				//	write	out	the	header
				int	bytesout;
				bytesout	=	fwrite(&year,	sizeof(year),	1,	fp);
				bytesout	=	fwrite(&month,	sizeof(month),	1,	fp);
				bytesout	=	fwrite(&day,	sizeof(day),	1,	fp);
				//	write	the	data
				bytesout	=	fwrite(mydata,	sizeof(int),	5,	fp);
				fclose(fp);
		}

		return	0;
}

#include	<stdio.h>

int	main(int	argc,	char	*argv[])	{

		FILE	*fp;
		int	bytesread;



year=2012,	month=8,	day=26
data	=	[2,4,6,8,10]

The	bottom	line	is,	as	long	as	you	know	what	the	binary	format	is	(that	is,	how	many	bytes	represent	each	value)	then
you	can	read	and	write	them	in	"raw"	binary	using	fread()	and	fwrite().

Links
The	C	Library	Reference	Guide
C	file	input/output

Exercises
1	Write	a	program	that	asks	the	user	to	enter	three	strings.	After	they	have	entered	all	three	strings,	print	the
strings	out	using	all	uppercase	letters.
2	Alter	the	program	so	that	it	prints	out	the	all-caps	strings	in	reverse.
3	Alter	the	program	again	so	that	it	writes	the	all-caps	reversed	strings	to	a	plaintext	file.
4	Write	a	program	that	reads	three	strings	from	a	plaintext	file,	reverses	each	string,	and	prints	them	out	to	the
screen.

Solutions
x
x
x
x

Paul	Gribble	|	Summer	2012
This	work	is	licensed	under	a	Creative	Commons	Attribution	4.0	International	License

		int	yy,	mm,	dd;
		int	thedata[5];

		fp	=	fopen("data.bin",	"r");
		if	(fp	==	NULL)	{
				printf("error	opening	data.bin\n");
				return	1;
		}
		else	{
				//	read	the	header
				bytesread	=	fread(&yy,	sizeof(int),	1,	fp);
				bytesread	=	fread(&mm,	sizeof(int),	1,	fp);
				bytesread	=	fread(&dd,	sizeof(int),	1,	fp);
				printf("year=%d,	month=%d,	day=%d\n",	yy,	mm,	dd);
				//	read	the	data
				bytesread	=	fread(thedata,	sizeof(int),	5,	fp);
				printf("data	=	[%d,%d,%d,%d,%d]\n",
											thedata[0],	thedata[1],thedata[2],thedata[3],thedata[4]);	
				fclose(fp);
		}

		return	0;
}


