
[	 ^	CSE	341,	Winter	2004	home	page 	|	 Lectures	index 	]

CSE	341:	Polymorphic	types	and	higher-order
functions

Polymorphic	types	and	type	variables
Recall	ML's	response	when	we	typed	in	nil	at	the	prompt:

-	nil;
val	it	=	[]	:	'a	list

The	'a	list	type	annotation	is	a	polymorphic	type,	because	it	contains	the	type	variable	'a.	Type
variables	in	ML	are	universally	quantified,	which	means	they	can	stand	for	"any	type"	---	think	of	'a	list
as	"for	all	a,	list	of	a".

The	presence	of	a	type	variable	in	a	type	indicates	that	the	type	is	a	"factory	for	types".	A	polymorphic
type	can	be	instantiated	with	any	type	substituted	for	the	type	variables.

ML	automatically	performs	instantiation	whenever	an	expression	is	used	in	a	fashion	requiring
instantiation	---	so,	for	example,	in	the	expression:

-	1::nil;
val	it	=	[1]	:	int	list

In	order	to	make	the	cons	expression	typecheck,	int	was	substituted	for	the	type	variable	'a,	thereby
making	the	cons	legal.

Here's	another	value	with	polymorphic	type:

-	fun	identity	x	=	x;
val	identity	=	fn	:	'a	->	'a

This	function	returns	whatever	is	passed	to	it	(it's	called	the	identity	function).	Clearly,	this	function	can	be
applied	to	any	value	---	it	imposes	no	constraints	on	its	argument	---	and	so	ML	infers	a	polymorphic	type
'a	->	'a,	meaning	that	this	function	returns	the	same	type	that	is	passed	as	its	argument.	Indeed,	when
the	function	is	applied,	its	result	type	is	appropriately	instantiated	to	be	whatever	its	argument	type	was:

-	identity	3;
val	it	=	3	:	int
-	identity	"hi";
val	it	=	"hi"	:	string

Note	that	type	variable	substitution	(like	all	type	operations	in	ML)	is	performed	statically	(at
compile/typecheck	time),	not	dynamically	(at	run	time);	to	prove	this,	apply	identity	inside	the	body	of	an
unevaluated	function:

-	fn	(s:string)	=>	identity	s;
val	it	=	fn	:	string	->	string

We	have	not	evaluated	the	body	of	the	fn	form,	but	ML	still	deduces	that	the	result	type	is	string.	In	order
to	do	this,	it	must	have	statically	instantiated	the	type	variables	in	identity's	type.

Multiple	type	variables

Types	are	not	restricted	to	having	one	type	variable	in	their	type.	Consider	the	following	function,	which
swaps	the	elements	of	a	pair:

-	fun	swap	(x,	y)	=	(y,	x);
val	swap	=	fn	:	'a	*	'b	->	'b	*	'a

http://courses.cs.washington.edu/courses/cse341/04wi/lectures/04-ml-higher-order.html Go OCT MAY JUN

03
2014 2016 2017

11	captures
	 	
	

� ⍰❎
f �

23	Nov	2013	-	6	Sep	2017 ▾	About	this	capture



The	operation	of	swapping	the	elements	of	a	pair	is	insensitive	to	the	types	of	the	elements.	Furthermore,
the	types	of	the	elements	need	not	be	the	same.	Therefore,	ML	assigns	two	different	type	variables	to	the
element	types.	This	function	can	be	applied	to	pairs	of	any	type:

-	swap("hi",	123);
val	it	=	(123,"hi")	:	int	*	string
-	swap(#"a",	(1,	2));
val	it	=	((1,2),#"a")	:	(int	*	int)	*	char
-	swap("foo",	"bar");
val	it	=	("bar","foo")	:	string	*	string

The	last	example	above	demonstrates	that	different	type	variables	may	be	instantiated	to	the	same	type.
The	use	of	different	variable	names	simply	indicates	that	they	may	be	instantiated	to	different	types,	not
that	this	must	be	so.

Built-in	polymorphic	functions
Some	of	the	functions	you've	seen	already	have	polymorphic	type.	To	wit:

-	hd;
val	it	=	fn	:	'a	list	->	'a
-	tl;
val	it	=	fn	:	'a	list	->	'a	list
-	op	::;
val	it	=	fn	:	'a	*	'a	list	->	'a	list
-	op	@;
val	it	=	fn	:	'a	list	*	'a	list	->	'a	list

(Note	that	prefixing	an	infix	operator	with	the	op	keyword	allows	you	to	refer	to	it	as	a	regular	name.)

Parametric	vs.	subtype	polymorphism:	'a	versus	Object
ML	type	variables	stand	for	"any	type".	But	this	is	different	from,	e.g.,	Object	in	Java,	which	also	stands	for
any	(object)	type	---	but	in	a	different	way.	Consider	a	method:

static	Object	foo(Object	o)	{	...	}

If	we	use	ML-like	arrow	syntax	to	describe	the	type	of	this	method,	we	might	write	Object	->	Object.	But	this
does	not	mean	that	foo	returns	a	value	having	the	same	type	as	its	argument,	like	the	ML	identity	function.
foo	might	return	a	different	type	altogether.	In	fact,	there	is	no	known	relationship	between	the	argument
and	result	type	of	foo.	Here	is	a	possible	legal	implementation	of	foo:

static	Object	foo(Object	o)	{	return	"hello";	}

Type	variables	in	ML	polymorphic	types	must	be	substituted	consistently	throughout	a	type.	Java	has	a
different	form	of	polymorphism,	called	subtype	polymorphism	(where	any	type	may	be	substituted	for
any	of	its	supertypes	in	any	position).	We'll	return	to	this	later	in	the	quarter,	when	we	discuss	static
typing	in	object-oriented	languages.

The	strength	of	ML-style	polymorphism	is	that	it	"preserves	more	information".	Imagine	if	foo	really	were
an	identity	function:

static	Object	foo(Object	o)	{	return	o;	}

Now,	imagine	some	caller	who	wished	to	use	this:

String	s	=	...;
String	t	=	(String)foo(s);

The	caller	must	re-cast	the	result	of	foo	back	to	String,	because	the	static	type	of	foo	loses	the	information
that	foo	returns	the	same	static	type	as	its	argument.

Higher-order	functions

Review:	Functions	as	arguments	and	return	values
Recall	that	functions	are	first	class.	They	can	be	stored	in	data	structures,	or	serve	as	function	arguments



or	return	values.	Here's	a	trivial	function	that	takes	unit,	and	returns	a	function	that	prepends	"Hi,	"	to	its
argument:

-	fun	prependHi	()	=	fn	s	=>	"Hi,	"	^	s;
val	prependHi	=	fn	:	unit	->	string	->	string

A	function	that	operates	over	other	functions	is	called	higher-order	(to	contrast	with	first-order
functions,	which	do	not	operate	over	functions).
Higher-order	functions	are	invaluable	because	they	enable	novel	(de)compositions	of	behavior	---	a
function	can	delegate	some	of	the	responsibility	for	defining	behavior	to	its	caller,	and	library	functions
can	be	written	that	factor	out	patterns	of	behavior	commonly	repeated	in	different	clients.

Polymorphic	types	and	higher-order	types	go	naturally	together.	Here's	a	function	that	applies	its	first
argument	to	its	second:

fun	applyF	(f,	v)	=	f	v;
-	val	applyF	=	fn	:	('a	->	'b)	*	'a	->	'b

Note	the	polymorphic	type.	The	argument	of	f	must	have	the	same	type	as	v,	to	which	it	will	eventually	be
applied	---	hence	the	matching	'a	type	variables	---	and	the	result	of	the	whole	function	must	be	the	same
as	the	result	of	f	---	hence	the	matching	'b	type	variables.

All	non-trivial	languages	(even	C)	have	some	form	of	higher-order	function.	ML,	and	functional	languages
generally,	provide	higher-order	functions	in	a	particularly	convenient	form,	which	encourages	their	use.

Here's	a	more	interesting	higher-order	function	that	returns	the	maximum	of	two	elements	in	a	tuple,
based	on	a	comparison	function	that	is	passed	as	an	argument:

-	fun	max	(greaterThan,	(a,	b))	=
				if	greaterThan(a,	b)	then	a	else	b;
val	max	=	fn	:	('a	*	'a	->	bool)	*	('a	*	'a)	->	'a

This	could	be	used	to	compare	records	by	two	different	fields	---	one	would	simply	need	to	pass	different
functions.	This	form	of	parameterization	is	common	in,	e.g.,	sorting	algorithms.

Currying
Any	function	taking	a	tuple	of	arguments	can	be	written	as	a	higher-order	function	taking	one	argument.
Consider	addition:

-	val	add	=	fn	(x,	y)	=>	x	+	y;
val	add	=	fn	:	int	*	int	->	int
-	val	addX	=	fn	x	=>	fn	y	=>	x	+	y;
val	addX	=	fn	:	int	->	int	->	int
-	val	add5	=	addX	5;
val	add5	=	fn	:	int	->	int
-	add5	4;
val	it	=	9	:	int
-	add5	6;
val	it	=	11	:	int

add	and	addX	both	add	two	integers.	But	whereas	add	does	this	directly,	addX	does	it	in	two	steps:	when
given	an	argument	x,	returns	a	function	that	adds	x	to	its	argument.	This	function	can	then	be	applied	to
yield	the	sum.

Currying	allows	you	to	partially	apply	a	function	to	some	of	its	arguments,	leaving	a	residual	function
which	can	be	further	evaluated	later.

This	transformation	---	whereby	a	function	with	a	tuple	of	arguments	is	transformed	into	a	higher-order
function	---	is	called	currying,	after	the	mathematician	Haskell	Curry,	who	employed	a	similar
transformation	in	some	of	his	work.

Currying	is	so	common	in	ML	that	there	is	a	special	syntax	for	it	---	simply	put	a	space	between	curried
arguments	to	a	function:

-	fun	addX	x	y	=	x	+	y;
val	addX	=	fn	:	int	->	int	->	int

Note	the	curried	function	type.	Because	function	application	is	left-associating,	curried	function	application



can	be	written	by	following	the	function	expression	by	its	space-separated	arguments:

-	addX	3	4;
val	it	=	7	:	int

Many	of	the	functions	in	the	ML	standard	library	are	curried.

Standard	higher-order	list	functions
We	have	mentioned	that	higher-order	function	can	factor	out	common	"patterns"	of	behavior.	We'll
examine	some	functions	from	the	ML	standard	library	that	do	just	this.

map

Functional	programmers	often	write	functions	that	take	a	list	and	return	a	different	list,	whose	elements
are	computed	by	doing	"something"	to	each	of	the	input	lists'	elements.

Consider	the	function	that	converts	a	list	of	integers	to	a	list	of	strings:

fun	allToString	nil	=	nil
		|	allToString	(x::xs)	=	(Int.toString	x)	::	(allToString	xs);
val	allToString	=	fn	:	int	list	->	string	list

Now	consider	the	function	that	computes	the	factorial	of	each	element	of	an	integer	list:

fun	factorial	0	=	0
		|	factorial	n	=	n	*	factorial	(n-1);

fun	allFactorial	nil	=	nil
		|	allFactorial	(x::xs)	=	(factorial	x)	::	(allFactorial	xs);

Now	consider	the	function	that	converts	a	list	of	Celsius	temperatures	to	Fahrenheit	temperatures:

fun	c2f	temp	=	(temp	*	9.0/5.0)	+	32.0;

fun	allC2F	nil	=	nil
		|	allC2F	(x::xs)	=	(c2f	x)	::	(allC2F	xs);

You	should	notice	a	pattern.	Each	of	these	recursive	functions	has:

The	same	base	case:	for	the	empty	list,	return	the	empty	list
A	function	that	maps	elements	of	the	input	list	to	elements	of	the	output	list
An	inductive	case	that	applies	the	function	to	the	head,	then	conses	this	onto	a	recursive	invocation
of	the	tail.

This	is	a	pattern	that	can	be	factored	out	into	a	higher-order	function;	we'll	call	it	myMap	(to	avoid	conflicting
with	the	built-in	library	function	map):

fun	myMap	(f,	nil)	=	nil
		|	myMap	(f,	x::xs)	=	(f	x)	::	myMap	(f,	xs);
val	myMap	=	fn	:	('a	->	'b)	*	'a	list	->	'b	list

In	myMap,	the	function	that	maps	input	list	elements	to	output	list	elements	is	factored	out	as	a	parameter.
The	myMap	function	itself	handles	only	the	list	traversal	and	construction	behavior.	We	can	write	each	of	the
"mapping	pattern"	functions	above	using	an	application	of	myMap:

fun	allToString'	aList	=	myMap	(Int.toString,	aList);
fun	allFactorial'	aList	=	myMap	(factorial,	aList);
fun	allC2F'	aList	=	myMap	(c2f,	aList);

Applications	of	map	(and	other	higher-order	functions)	are	so	common	that	functional	programmers	often
don't	bother	to	bind	the	function	argument	to	a	name;	they	use	anonymous	functions	directly:

fun	allC2F''	aList	=
				myMap	(fn	temp	=>	(temp	*	9.0/5.0)	+	32.0,	aList);

Final	note:	the	standard	library	map	uses	the	curried	form	instead	of	the	tuple	form:



-	map;
val	it	=	fn	:	('a	->	'b)	->	'a	list	->	'b	list

List.filter

Another	common	pattern	is	to	filter	a	list	into	only	those	that	satisfy	some	common	predicate.	For
example,	suppose	you	wanted	to	write	a	function	that	returned	only	the	positive	elements	of	a	real	list.
You	could	write	it	as	follows:

fun	positives	nil	=	nil
		|	positives	(x::xs)	=
				if	x	>	0.0	then
								x	::	(positives	xs)
				else
								positives	xs;

But	we	can	generalize	this	by	making	the	filter	expression	---	here	x	>	0.0	---	into	an	application	of	a
function	parameter.	Call	this	function	the	predicate;	then,	we	can	define	a	generic	filter	function	as
follows	(note	that	we	use	the	curried	syntax):

fun	myFilter	pred	nil	=	nil
		|	myFilter	pred	(x::xs)	=
				if	pred	x	then
								x	::	(myFilter	pred	xs)
				else
								myFilter	pred	xs;
val	myFilter	=	fn	:	('a	->	bool)	->	'a	list	->	'a	list

Now,	we	can	obtain	positives	as	a	special	case	of	this	function:

fun	positives'	aList	=	myFilter	(fn	x	=>	x	>	0.0)	aList;

Thought	exercise:	Here's	a	version	of	the	above	function	that	exploits	currying;	why	does	it	work?

val	positives''	=	myFilter	(fn	x	=>	x	>	0.0);

The	standard	library	version	of	filter	is	named	List.filter.

List.find

Another	common	pattern	is	to	pick	only	the	first	element	of	a	list	that	satisfies	a	given	predicate.	We'll	skip
directly	to	the	generic	function	definition	this	time:

fun	myFind	pred	nil	=	raise	Fail	"No	such	element"
		|	myFind	pred	(x::xs)	=
				if	pred	x	then	x	else	myFind	pred	xs;
val	myFind	=	fn	:	('a	->	bool)	->	'a	list	->	'a

(Ignore	the	raise	expression	for	now;	this	is	the	ML	way	of	signaling	an	error.	We'll	cover	exceptions	soon.)
Here's	an	application	of	myFind:

myFind	(fn	x	=>	x	>	0.0)	[~1.2,	~3.4,	5.6,	7.8];
val	it	=	5.6	:	real

The	standard	library	version	of	find	is	named	List.find.

foldl

We	can	generalize	the	notion	of	recursion	over	lists	still	further.	All	recursion	has	a	base	case,	an	iterative
case,	and	a	way	of	combining	results.	Suppose	we	made	all	three	of	these	parameters;	then	we'd	get	foldl
("fold	left"),	which	functional	programmers	sometimes	call	reduce	(we'll	just	call	our	function	by	that
name):



fun	reduce	f	b	nil	=	b
		|	reduce	f	b	(x::xs)	=
				let
								val	rest	=	reduce	f	b	xs;
								val	combined	=	f	(x,	rest);
				in
								combined
				end;
val	reduce	=	fn	:	('a	*	'b	->	'b)	->	'b	->	'a	list	->	'b

reduce	operates	as	follows:

For	nil,	it	returns	the	base	case.
For	the	inductive	case,	it	processes	the	rest	of	the	list,	and	then	combines	the	result	of	processing	the
rest	of	the	list	with	the	result	of	processing	the	head.

To	understand	the	uses	of	reduce,	consider	a	function	that	sums	the	elements	of	a	list,	which	we'll	write	in
the	slightly	more	verbose	form	to	make	the	parallel	clear:

fun	sumList	nil	=	0
		|	sumList	(x::xs)	=
				let
								val	rest	=	sumList	xs;
								val	combined	=	x	+	rest;
				in
								combined
				end;

Clearly	this	function	can	be	written	by	plugging	in	zero	(the	base	case)	and	addition	(the	combining
function)	where	b	and	f	would	go	in	reduce.	Passing	them	as	parameters	allows	us	to	do	exactly	that:

fun	sumList'	aList	=	reduce	(op	+)	0	aList;
val	sumList'	=	fn	:	int	list	->	int
sumList'	[1,	2,	3];
val	it	=	6	:	int

The	standard	library	version	of	reduce	is	named	foldl	(there	is	also	a	foldr,	which	"folds"	the	list	up	in	the
reverse	order;	you	can	experiment	with	foldr	to	see	what	it	does).

Summary:	higher-order	functions	as	control	structures

map	and	reduce	serve	purposes	similar	to	for	loops	in	Java	(or	foreach	loops	in	many	other	languages,	e.g.
Perl):	programmers	use	them	to	iterate	over	the	elements	of	a	list.	But	these	need	not	be	hard-coded	into
the	language,	and	iteration	functions	can	easily	be	defined	for	more	complex	data	structures	such	as
trees.

Languages	which	make	higher-order	functions	available	in	a	convenient	form	allow	programmers	to
effectively	program	their	own	control	structures.

We'll	see	an	even	more	aggressive	use	of	anonymous	functions	and	higher-order	functions	for	control
structures	when	we	learn	Smalltalk.

Supplemental	exercises
1.	 For	each	of	map,	filter,	and	find,	determine	whether	it	is	tail-recursive.	Explain	why	or	why	not;	and	if

not,	write	a	tail-recursive	version.	Write	a	few	test	expressons	to	show	that	your	function	works
properly.	(Note	that	you	may	have	to	reverse	the	elements	when	you're	done	processing	the	list.)

2.	 Rewrite	myMap	as	a	hand-curried	function	(i.e.,	using	explicit	fn	forms	in	the	body)	instead	of	a	function
taking	a	tuple.	Rewrite	sumList'	in	a	form	that	exploits	currying.

3.	 Write	the	equivalent	of	map	in	C++	or	Java,	using	an	object	with	a	mapping	function	as	the	function
parameter.

Solutions	are	available.

This	work	is	licensed	under	a	Creative	Commons	License.	Rights	are	held	by	the	University	of	Washington,	Department	of	Computer
Science	and	Engineering	(see	RDF	in	XML	source).


